Главная · Сон · Почки и их функции физиология. Какие процессы происходят в почках? Основные функции органов

Почки и их функции физиология. Какие процессы происходят в почках? Основные функции органов


Министерство образования и науки РФ

ГОУ ВЛО «Тульский государственный университет»

Медицинский институт

Лечебный факультет

Кафедра медико-биологических дисциплин

Контрольно-курсовая работа

«Физиология почек. Регуляция мочеобразования».

Выполнил: студент гр.120581

Фролова Д.А.

Проверил: Хапкина А.В.
Тула, 2010 г

Вступление……………………………………………………………………………………………………………………………..……….3

Строение почек……………………………………………………………………………………………………………………………….5

Строение нефрона……………………………………………………………………………………………………………………….….8

Кровообращение почек………………………………………………………………………………………………………………….10.

Функции почек…………………………………………………………………………………………………………………………..……12

Мочеобразование……………………………………………………………………………………………………………………….....13

Регуляция мочеобразования………………………………………………………………………………………………….………14

Список литературы……………………………………………………………………………………………………………………….…17

Вступление

В процессе жизнедеятельности в организме человека образуются значительные количества продуктов обмена, которые уже не используются клетками и должны быть удалены из организма. Кроме того, организм должен быть освобожден от токсичных и чужеродных веществ, от избытка воды, солей, лекарственных препаратов. Иногда процессам выделения предшествует обезвреживание токсических веществ, например в печени. Так, такие вещества, как фенол, индол, скатол, соединяясь с глюкуроновой и серной кислотами, превращаются в менее вредные вещества.

Органы, выполняющие выделительные функции, называются выделительными, или экскреторными. К ним относят почки, легкие, кожу, печень и желудочно-кишечный тракт. Главное назначение органов выделения - это поддержание постоянства внутренней среды организма. Экскреторные органы функционально взаимосвязаны между собой. Сдвиг функционального состояния одного из этих органов меняет активность другого. Например, при избыточном выведении жидкости через кожу при высокой температуре снижается объем диуреза. Нарушение процессов выделения неизбежно ведет к появлению патологических сдвигов гомеостаза вплоть до гибели организма.

Легкие и верхние дыхательные пути удаляют из организма углекислый газ и воду. Кроме того, через легкие выделяется большинство ароматических веществ, как, например, пары эфира и хлороформа при наркозе, сивушные масла при алкогольном опьянении. При нарушении выделительной функции почек через слизистую оболочку верхних дыхательных путей начинает выделяться мочевина, которая разлагается, определяя соответствующий запах аммиака изо рта. Слизистая оболочка верхних дыхательных путей способна выделять йод из крови.

Печень и желудочно-кишечный тракт выводят с желчью из организма ряд конечных продуктов обмена гемоглобина и других порфиринов в виде желчных пигментов, конечные продукты обмена холестерина в виде желчных кислот. В составе желчи из организма экскретируются также лекарственные препараты (антибиотики), бромсульфалеин, фенолрот, маннит, инулин и др. Желудочно-кишечный тракт выделяет продукты распада пищевых веществ, воду, вещества, поступившие с пищеварительными соками и желчью, соли тяжелых металлов, некоторые лекарственные препараты и ядовитые вещества (морфий, хинин, салицилаты, ртуть, йод), а также красители, используемые для диагностики заболеваний желудка (метиленовый синий, или конгорот).

Кожа осуществляет выделительную функцию за счет деятельности потовых и в меньшей степени сальных желез. Потовые железы удаляют воду , мочевину, мочевую кислоту, креатинин, молочную кислоту, соли щелочных металлов, особенно натрия, органические вещества, летучие жирные кислоты, микроэлементы, пепсиноген, амилазу и щелочную фосфатазу. Роль потовых желез удалении продуктов белкового обмена возрастает при заболеваниях почек, особенно при острой почечной недостаточности. С секретом сальных желез из организма выделяются свободные жирные и неомыляемые кислоты, продукты обмена половых гормонов.

Почка представляет орган, где вырабатывается моча. Конечные продукты белкового обмена организма в виде мочевины, мочевой кислоты, креатинина, продукты неполного окисления органических веществ (ацетоновые тела, молочная и ацетоуксусная кислоты), соли, эндогенные и экзогенные токсические вещества, растворённые в воде, преимущественно удаляются из организма через почку. Небольшая часть этих веществ выводится через кожу и слизистые оболочки. Поэтому почки наряду с лёгкими, выделяющими углекислый газ, представляют главнейший орган, через который осуществляется очищение от конечных и ненужных организму продуктов обмена. Без доставки питательных веществ извне организм может существовать длительное время, без выведения экскретов погибает за 1-2 суток. Замечательное строение почки приспособлено так, что через биологические мембраны в мочевыводящие пути проникают только ненужные организму вещества. В почке на капиллярном уровне возникло теснейшее взаимоотношение между кровеносными сосудами и мочевыми канальцами. Экскреты, находящиеся в крови в малых концентрациях, проникают через сосудистую стенку в мочевые канальцы.

Строение почек

Почка – парный орган бобовидной формы. Длина её 10-12 см, ширина 5-6 см, толщина 3-4 см, масса 120-200 г. Левая почка несколько длиннее правой и иногда имеет больший вес. Цвет почек чаще тёмно-коричневый.

Строение правой почки (фронтальный разрез):

1 - корковое вещество; 2- мозговое вещество; 3- почечные сосочки; 4- почечные столбы; 5- фиброзная капсула; 6- малые почечные чашки; 7-мочеточник; 8- большая почечная чашка; 9 - почечная лоханка; 10- почечная вена; 11 - почечная артерия; 12- почечная пирамида

Внешнее строение . Наружный край выпуклый, внутренний - вогнутый. На внутреннем крае имеется углубление, где формируются ворота почки , ведущие в её пазуху. В воротах и пазухе располагаются чашечки, лоханки, мочеточник, артерия, вена и лимфатические сосуды. Если рассматривать отношение сосудов, лоханки и мочеточника, то спереди располагается вена, затем артерия и лоханка. Все эти образования заключены в жировую и рыхлую соединительную ткань почечной пазухи. Верхний конец почки более острый, чем нижний, передняя поверхность её более выпукла, чем задняя.

Внутреннее строение . На разрезе почек видно, что они состоят из мозгового и коркового вещества различной плотности и цвета; мозговое вещество плотнее коркового, несколько голубовато-красного цвета, корковое – желтовато-красного; эти различия зависят от неодинакового кровенаполнения.

Корковое вещество располагается снаружи и имеет толщину 4 – 5 мм. Мозговое вещество образует 15 – 20 пирамидок, широким основанием обращённых к корковому веществу, а узкой частью (верхушкой) – к пазухе почки. При слиянии 2 – 3 верхушек пирамид формируется сосочек, который окружён малой почечной чашечкой. Между корковым и мозговым веществом не существует ровной границы. В мозговое вещество между пирамидками проникает часть коркового вещества в виде столбов, а в корковое вещество проникает мозговое вещество в виде его лучистой части. Прослойки коркового вещества, находящиеся между лучистыми частями, состоят из свёрнутой части. Лучистая и свёрнутая части образуют дольку коркового вещества. Долька почки – часть коркового вещества, соответствующая основанию мозгового вещества и чётко выделяющаяся у детей.

В образовании коркового и мозгового вещества принимают участие кровеносные сосуды и мочевые канальцы.

Почечная артерия диаметром 7 – 9 мм начинается от брюшной аорты и в воротах почки разделяется на 5 – 6 ветвей, направляющихся к её верхнему, нижнему полюсам и центральной части. В вещество почки между пирамидками проникают междолевые артерии, которые у основания пирамид заканчиваются дуговыми артериями. Дуговые артерии располагаются на границе коркового и мозгового вещества. От дуговых артерий формируются два вида сосудов: одни направляются в корковое вещество в виде междольковых артерий , другие – в мозговое вещество, где образуются кровеносные капилляры для кровоснабжения петель нефрона . Междольковые артерии разделяются на приносящие артериолы, которые переходят в сосудистые клубочки, имеющие диаметр 100 – 200 мкм. Сосудистые клубочки представляют сеть кровеносных капилляров, выполняющих функцию не тканевого обмена, а фильтрации экскретов. Кровеносные капилляры клубочка собираются в его воротах в выносящую артериолу. Выносящая артериола клубочка имеет диаметр меньший, чем приносящая артерия. Разность диаметров артериол способствует поддержанию высокого кровяного давления в капиллярах клубочка, что является необходимым условием в процессе мочеобразования. Выносящий сосуд клубочка разделяется на капилляры, которые образуют густые сети вокруг мочевых канальцев и лишь затем переходят в венулы. Венозные сосуды, за исключением сосудистого клубочка приносящие артериолы и выносящие артериолы, повторяют ветвление артерий.

Вторым важным элементом почки является мочеобразующая система, названная нефроном . Нефрон начинается слепым расширением – двухстенной капсулой клубочка, которая выстлана одним слоем кубического эпителия. В результате соединения капсулы клубочка и сосудистого клубочка формируется новое функциональное образование – почечное тельце. Почечных телец насчитывается 2 млн. От капсулы клубочка начинаются извитые канальцы 1-го порядка, переходящие в нисходящую часть петли нефрона. Восходящая часть петли нефрона переходит в извитой каналец 2-го порядка, который вливается в прямые канальцы. Последние являются собирательными трубками для многих извитых канальцев 2-го порядка. Прямые канальцы в мозговом веществе впадают в сосочковые протоки, которые на вершине сосочка образуют решетчатое поле.

Таким образом, кровеносные сосуды, мочевые канальцы и окружающая соединительная ткань формируют вещество почки. Из этого следует, что корковое вещество складывается из междольковых артерий, приносящих артериол, выносящих артериол, почечных телец, капилляров и петель мочевых канальцев, прямых и собирательных трубочек.

В каждом почечном тельце выделяется за сутки 0,03 мл первичной мочи. Образование её возможно при кровяном давлении около 70 мм рт. ст. При кровяном давлении ниже 40 мм рт. ст. мочеобразование невозможно. При огромном числе почечных телец первичной мочи образуется около 60 л в сутки; она содержит 99% воды, 0,1% глюкозы, соли и другие вещества. Из первичной мочи, прошедшей через все отделы мочевого канальца, совершается реабсорбция воды и глюкозы в кровеносные капилляры. Окончательная моча объёмом 1,2 – 1,5 л в сутки через собирательные трубочки изливается в малые чашечки почечной лоханки.

Возрастные особенности . У новорожденного лучше видны границы долек. К моменту рождения и после него первые месяцы ещё продолжается формирование новых нефронов. По отношению к массе тела на единицу поверхности почки у детей приходится больше клубочков , чем у взрослого. Несмотря на это, фильтрующая мощность клубочков ниже, чем у взрослого, что обусловлено меньшим объёмом клубочков и более толстым эпителием почечной капсулы. Канальцевая реабсорбция также понижена. К 20 годам заканчивается рост массы почки за счёт увеличения размеров почечных телец и длины мочевых канальцев.

Оболочки почки . С корковым веществом почки срастается фиброзная капсула, от которой начинаются нежные соединительнотканные междольковые прослойки, невидимые простым глазом. Помимо соединительнотканных волокон, в капсуле имеется плохо выраженный слой гладких мышц. За счёт незначительного их сокращения поддерживается внутритканевое давление почки, что необходимо для процессов фильтрации.

Почку окутывает жировая капсула, состоящая из рыхлой соединительной ткани, где при избыточном питании откладывается жир. Жировая капсула почки лучше развита на её задней поверхности и имеет определённое значение в удержании почки в поясничной области. При похудании, когда жир в жировой капсуле исчезает, может возникнуть подвижность почки (блуждающая почка).

Самой наружной оболочкой является почечная фасция, представляющая двухслойную пластинку. Передний и задний листки почечной фасции на наружном крае и верхнем полюсе почки соединяются, а внизу в виде футляра продолжаются по мочеточнику до мочевого пузыря. На внутреннем крае фасциальные листки впереди и позади сосудов в 70% случаев соединяются с листками другой стороны.

Почка удерживается в нише поясничной области, образованной большими поясничными мышцами, квадратной мышцей и поясничной частью диафрагмы; оболочками почки, которые имеют многочисленные соединительнотканные волокна, соединяющие почечную фасцию, жировую капсулу и фиброзную капсулу ; кровеносными сосудами почки, и положительным внутрибрюшинным давлением.

Т о п о г р а ф и я. Почки располагаются в забрюшинной области по бокам позвоночника. Синтопия и скелетотопия правой и левой почек различны. Верхний полюс левой почки находится на уровне XI грудного позвонка, нижний – между II и III поясничными позвонками. XII ребро пересекает левую почку в области ворот, что является хорошим ориентиром при хирургическом доступе к почке. Правая почка располагается на 3 см ниже, чем левая.

Верхним концом почка соприкасается с надпочечником. Правая почка прилежит к печени и нисходящей части двенадцатиперстной кишки, а нижний её конец – к правому изгибу тонкой кишки. Левая почка соприкасается с желудком, селезёнкой и нисходящей частью толстой кишки. Корень брыжейки поперечной ободочной кишки пересекает почку посередине.

Строение нефрона

Основной структурно-функциональной единицей почки является нефрон, в котором происходит образование мочи. У человека в каждой почке насчитывается около 1 млн. нефронов.

Нефрон состоит из нескольких последовательно соединенных отделов. Начинается нефрон с почечного (мальпигиева) тельца (1) , которое содержит клубочек кровеносных капилляров, имеющий форму двустенной чаши.. Снаружи клубочки покрыты двухслойной капсулой Шумлянского - Боумена.

Внутренняя поверхность капсулы выстлана эпителиальными клетками. Наружный, или париетальный, листок капсулы состоит из базальной мембраны, покрытой кубическими эпителиальными клетками, переходящими в эпителий канальцев. Между двумя листками капсулы, расположенными в виде чаши, имеется щель или полость капсулы, переходящая в просвет проксимального отдела канальцев (2) .

Из полости капсулы моча поступает в проксимальный отдел канальца нефрона, длиной около 14 мм и диаметром 50-60 мкм, образованный одним слоем высоких цилиндрических каемчатых клеток, на апикальной поверхности которых имеется щеточная каемка, состоящая из множества микроворсинок. Около 85% натрия и воды, а также белок, глюкоза, аминокислоты, кальций, фосфор из первичной мочи всасываются именно в проксимальных отделах. Проксимальный отдел переходит в тонкую нисходящую часть петли Генле (3) - (около 15 мкм в диаметре), стенка которой покрыта плоскими эпителиальными клетками. Нисходящий отдел петли опускается в мозговое вещество почки, поворачивает на 180° и переходит в восходящую часть петли нефрона. Дистальный отдел канальцев состоит из восходящей части петли Генле (4) и может иметь тонкую и всегда включает толстую восходящую часть. Этот отдел поднимается до уровня клубочка своего же нефрона, где начинается дистальный извитой каналец (5) . Этот отдел канальца располагается в коре почки и обязательно соприкасается с полюсом клубочка между приносящей и выносящей артериолами в области плотного пятна. Дистальные извитые канальцы через короткий связующий отдел впадают в коре почек в собирательные трубочки (6) . Собирательные трубочки опускаются из коркового вещества почки в глубь мозгового вещества, сливаются в выводные протоки и открываются в полости почечной лоханки. Почечные лоханки открываются в мочеточники, которые впадают в мочевой пузырь.

Всасывание воды в дистальной части и собирательных трубочках регулируется антидиуретическим гормоном задней доли гипофиза. В результате этого количество окончательной мочи по сравнению с количеством первичной резко уменьшается (до 1,5 л в сутки), в то же время возрастает концентрация веществ, не подвергающихся обратному всасыванию. Корковое вещество составляют почечные тельца и дистальные отделы нефронов. Мозговые лучи и мозговое вещество образованы прямыми канальцами, мозговые лучи - нисходящими и восходящими отделами петель корковых нефронов и начальными отделами собирательных трубочек; а мозговое вещество почки - нисходящими и восходящими отделами и коленами петель нефронов, конечными отделами собирательных трубочек и сосочковыми протоками.

Моча из сосочковых отверстий поступает в малые, затем в большие почечные чашки и лоханку, переходящую в мочеточник. Стенки почечных чашек, лоханки, мочеточников и мочевого пузыря, в основном, построены одинаково: они

Почки обеспечивают постоянство среды, необходимой для функционирования клеток организма. Они регулируют водно-солевой баланс, кислотно-щелочное состояние, выделяют продукты азотистого обмена и чужеродные вещества.

Клубочковая фильтрация

Клубочковая фильтрация является начальным этапом мочеобразования. В просвет боуменовой капсулы поступает моча или т.н. «безбелковый ультрафильтрат» плазмы. В ультрафильтрат попадает лишь небольшое количество белка с низкой молекулярной массой (до 50 000 Да), большая часть которого реабсорбируется в проксимальных канальцах. Ультрафильтрат в клубочках образуется со скоростью 120-130 мл/мин или около 180 л в сутки. Образование свободного от форменных элементов и белков крови ультрафильтрата зависит прежде всего от гидростатического давления в клубочковых капиллярах, создаваемого работой сердца. Величина эффективного фильтрационного давления невелика. Гидростатическому давлению в клубочках, которое остается неизменным на всем протяжении клубочкового капилляра, противодействуют онкотическое давление плазмы внутри капилляра и гидростатическое давление в боуменовой капсуле (или проксимальном канальце). В обеспечении высокой скорости клубочковой фильтрации (СКФ) имеет значение проницаемость фильтрующей мембраны и площадь поверхности, доступной для фильтрации. СКФ рассчитывается с учетом уровня креатинина в сыворотке крови по формуле Кокрофта-Голта у взрослых и по или формуле Филлера с учетом уровня цистатина С в крови (таблица 1.1). У новорожденных из-за малого диаметра и меньшей фильтрующей поверхности клубочков СКФ значительно меньше, чем у взрослых, и равняется 20-30 мл/мин. У взрослых такой уровень СКФ свидетельствовал бы о тяжелой степени прогрессирующего (склерозирующего) процесса в почках, т.е. о хронической болезни почек (ХБП) 4 степени. Далее в течение первого года жизни СКФ повышается и достигает нормального уровня взрослого.

Таблица 1.1. Нормативы сывороточного креатинина, цистатина С и СКФ в зависимости от возраста

Возраст Креатинин Цистатин С, мг/л СКФ, мл/мин/1.73м 2
µмоль/л мг/дл
3 дня 80-130 0,8-1,5 1,2-2,4 20-30
7 дней 30-40 0,4-0,6 1,0-2,2 20-30
1 мес – 1 год 25-40 0,4-0,6 0,8-1.6 70-100
2-8 лет 40-60 0,5-0,7 0,6-1.4 90-130
9-18 лет 50-80 0,6-0,9 0,6-1.4 90-130

Таким образом, величина СКФ зависит от числа функционирующих клубочков (массы действующих нефронов). При склерозировании клубочков (нефронов) падает и СКФ.

Изменение состава мочи с появлением патологических элементов (форменные элементы крови, белок) зависит от нарушения проницаемости трехслойного клубочкового барьера . Состояние проницаемости фильтрационного барьера определяется величиной пор и электрическим зарядом. Поры эндотелия задерживают форменные элементы, следующие 2 слоя – и подоциты являются барьерами для прохождения белков плазмы. Анионы задерживаются в большей степени благодаря высокому отрицательному заряду в нормальных структурах стенки капилляра. При генетической или приобретенной патологии проницаемость капилляра повышается вследствие структурных нарушений. Например, нарушения структуры подоцитов, щелевой мембраны приводят к (возможен ) , истончение , генетические аномалии коллагена – к эритроцитурии и (наследственный нефрит, болезнь тонких базальных мембран) .

Почечный кровоток и его регуляция

СКФ близка 90-130 мл/мин. Фильтрация снижается при сужении приносящих артериол и увеличивается при сужении выносящих. Регуляция почечного кровотока многогранная и сложная.

Канальцево-клубочковая обратная связь.

ЮГА осуществляет регуляцию СКФ в отдельных нефронах в зависимости от состава ультрафильтрата в дистальном канальце в зоне macula densa (плотного пятна). Клетки плотного пятна передают сигнал о повышении концентрации NaCl в канальце, что стимулирует высвобождение аденозина , синтезируемого клетками ЮГА. воздействует на рецепторы ангиотензина А1 и вызывает констрикцию приносящих артериол , что в свою очередь снижает СКФ и предотвращает чрезмерную потерю солей и воды с мочой. Стимулом для продукции ренина клетками ЮГА является падение концентрации NaCl в содержимом канальцев.

Транспорт веществ в канальцах

В канальцах происходит активный и пассивный транспорт веществ. . Активная реабсорбция идет с затратой энергии, обычно в виде АТФ (работа Na+/K+-АТФазы), против градиента концентрации. При наличии электрической или химической разности ионы и молекулы могут транспортироваться пассивно, путем простой диффузии.

Реабсорбция глюкозы

В проксимальных канальцах полностью реабсорбируется глюкоза. Экскреция ее с мочой связано обычно с гипергликемией, превышающей транспортные возможности канальцев. Транспорт осуществляется с помощью белка-переносчика и он сопряжен первичным активным транспортом натрия. Глюкозурия при нормальном содержании сахара в крови встречается при канальцевой патологии (ренальная глюкозурия) вследствие нарушения реабсорбции.

Реабсорбция белка

Белки, выводимые с мочой, предоставляют очень небольшую часть фильтруемых белков. Основная масса фильтруемых белков реабсорбируется в проксимальном канальце путем эндоцитоза. Реабсорбированные белки гидролизируются в вакуоли до аминокислот или пептидов. В нормальной моче остаются такие низкомолекулярные белки, как?2–микроглобулин, лизоцим, ?1 и?2 – микроглобулины, их количество незначительное. В окончательной моче содержится 40-150 мг белка, из них 40% составляет альбумин, 10% IgG, 5% — легкие цепи и 3% IgА, остальную часть составляют другие белки, главным образом, образующиеся в канальцах – белок Тамм-Хорсфалла. Повышение альбуминурии происходит при клубочковой патологии, повышение белка Тамм-Хорсфалла свидетельствует о патологии канальцев.

Реабсорбция аминокислот

Для транспорта аминокислот, которые реабсорбируются в проксимальных канальцах, существуют по меньшей мере четыре активные транспортные системы. Из-за их дефекта возникают

различные типы наследственных аминоацидурий. Так же в проксимальных канальцах реабсорбируются кальций, фосфор, натрий, кальций и другие вещества. При синдроме Фанкони поражается проксимальный каналец с нарушением реабсорбции ряда веществ (аммиак, глюкоза, фосфор, карбонаты и др.).

Транспорт натрия.

Почки имеют большое значение в поддержании водно-солевого баланса. Для этого в почках существует высокоэффективный транспорт натрия. Натрий – основной катион внеклеточной среды и для поддержания солевого баланса его концентрация строго контролируется. Натрий и хлор свободно фильтруются в клубочках. Но 99% профильтровавшихся воды и NaCl подвергается реабсорбции, и только 1% выделяется с мочой. Это происходит в основном в проксимальных канальцах (70%) и петле Генле (25%). В дистальных канальцах и в собирательных трубках реабсорбируется 2-5% Na+. Натрий всасывается в перитубулярную плазму за счет фермента Na+/K+- АТФ-азы, расположенного в базолатеральных мембранах канальцевого эпителия. За счет создаваемого градиента концентрации происходит пассивный транспорт других ионов посредством ионных каналов и переносчиков. Так, в проксимальных канальцах происходят ко-транспортные процессы: Na++HCO3-, Na++аминокислоты, Na++глюкоза, Na++органические молекулы; также происходит Na+/Н+- обмен и транспорт Сl-. Реобсорбция натрия сопровождается параллельным всасыванием эквивалентного количества воды. Поэтому содержимое проксимальных канальцев остается изотоничным относительно плазмы. В отличие от проксимального сегмента в других отделах канальцев натрий и вода всасываются независимо друг от друга. В дистальных канальцах и собирательных трубках реабсорбция натрия и воды регулируется гормонами.

Регуляция водно-солевого баланса в организме

Вода – основная составляющая организма человека и занимает 60% от массы тела взрослого . У новорожденных содержание воды выше, составляет 75% и приближается к 60% от массы тела к концу первого года жизни. В организме вода содержится в двух пространствах: внутриклеточном и внеклеточном. Последнее в свою очередь делится на внутрисосудистое (плазма) и межклеточное (интерстициальное). Объем внутриклеточной жидкости больше (30-40% массы тела), чем внеклеточной (20-25% массы тела). У плода и новорожденных объем внеклеточной жидкости относительно больше, чем у взрослых, поэтому они больше подвержены гипо-, гипергидратации. Водно-солевой баланс в организме регулируется за счет контроля двух показателей: осмоляльности и объема циркулирующей крови. Общая осмоляльность внеклеточной жидкости, создаваемая в основном солями натрия, равна 290 мосм/кг. Нормальное функционирование клеток возможно лишь при очень небольших колебаниях осмоляльности плазмы и внутрисосудистого объема.

Осмоляльность.

Все компоненты тела находятся в состоянии осмотического равновесия. Осморецепторы контролируют потребление воды, экскрецию ее почками в зависимости от концентрации солей натрия. При нарушении содержания натрия в организме система регуляции осмоляльности сдвигает водный баланс и тем самым изменяет внутрисосудистый объем для восстановления осмотического равновесия. Существуют сложные системы волюморецепторов, чувствительных к изменению объема. Изменение объема (гипо-, гиперволемия) вызывает изменение экскреции натрия. Однако в условиях гиповолемии первым включается механизм восстановления внутрисосудистого объема, т.е. происходит задержка воды в ущерб осмоляльности.

Регуляция экскреции натрия почками.

Натриевый баланс регулируется почками. Потребление натрия фактически не регулируется. Именно почки адаптируются к резким колебаниям потребления соли. Экскреция натрия может снижаться почти до нуля и столь же резко возрастать. Ведущим фактором, определяющим выделение натрия почками, является СКФ. Достаточно небольших изменений СКФ, чтобы вызвать выраженные изменения экскретируемого натрия. Поскольку СКФ изменяется, должны существовать механизмы регуляции выделения натрия почками. Существуют внешние и внутренние факторы регуляции. К внешним факторам относятся гормональные факторы, к внутренним – внутрипочечные механизмы. К последним относится клубочково-канальцевый баланс. Благодаря ему повышение или снижение реабсорбции натрия сопровождается повышением или снижением СКФ. Транспорт натрия регулируется рядом гормонов. Это – альдостерон, предсердный натрийуретический пептид, ангиотензин II, норадреналин, простагландины, допамин, вазопрессин.

Транспорт калия в почках.

Калий – основной катион клеточной цитоплазмы, где его концентрация во много раз выше содержания во внеклеточной жидкости. Такая разница потенциалов чрезвычайно важна для функционирования клеток нервной, мышечной ткани, включая миокард. Калий свободно фильтруется в клубочках почек, далее он почти полностью (до 95%) реабсорбируется. Если натрий всасывается по всей длине почечных канальцев, а с мочой экскретируется натрий, который не успел реабсорбироваться, то основная часть профильтрованного калия реабсорбируется до того, как моча достигнет собирательных трубок. Тот калий, который все-таки выделяется с мочой, специально секретируется в собирательных трубках. Секреция калия осуществляется основными клетками собирательных трубок. Диуретические препараты амилорид, триамтерен подавляют секрецию калия, обладая калий-сберегающим эффектом. Транспорт калия регулируется активностью Na+/K+-АТФ-азы и калиевыми каналами. Альдостерон регулирует как деятельность транспортера Na+/K+-АТФ-азы, так и состояние калиевых каналов. Он увеличивает реабсорбцию натрия и секрецию калия. блокирует рецепторы альдостерона, оказывая калий сберегающий эффект. Помимо почек

калий выделяется желудочно-кишечным трактом и при потоотделении. На клеточное распределение калия влияют гормоны (, катехоламины, гормоны щитовидной железы, альдостерон), кислотно-щелочное состояние и повреждение клеток. Лизис клеток приводит к гиперкалиемии. Ацидоз способствует выходу калия из клеток (Н+ внутри клетки замещает К+), а эффект алкалоза противоположный. Катехоламины способствуют гипокалиемии. Связь между инсулином и поглощением клеткой калия двухсторонняя. Гиперкалиемия стимулирует, гипокалиемия угнетает выделение . Поэтому инсулин способствует входу калия в клетку. На этом основано действие глюкозо-инсулиновых растворов при гиперкалиемии.

Транспорт кальция, фосфатов и магния.

Кальций – основной двухвалентный катион организма. Второй по значимости двухвалентный катион – магний. Основной двухвалентный анион – фосфат. Большая часть этих трех элементов сосредоточена в костной ткани. Концентрация Са?+ и НРО4?- (в меньшей степени Мg?+) в плазме крови поддерживаются благодаря быстрому высвобождению их с костной ткани. Концентрация Са?+ и НРО4?- в плазме крови тесно связаны. Произведение Са?+ х НРО4?- поддерживается на определенном уровне. Даже незначительный прирост в величине этого показателя приводит к формированию труднорастворимого фосфата кальция, который откладывается в костях. Особую опасность представляют внеклеточные отложения этих солей в сосудах, мышцах при нарушении костно-минерального обмена. Концентрация кальция в плазме крови поддерживается в нормальных пределах за счет всасывания из кишечника и путем высвобождения из костей. Уровень магния определяется скоростью его выведения с мочой, а фосфата – всеми тремя способами.

Всасывание кальция в кишечнике усиливается витамином Д. Всего из пищевого кальция всасывается 25-30%. Общее содержание Са?+ в плазме составляет 2,5 ммоль/л, из которых 50% находятся в свободном (ионизированном) состоянии, 45% в виде комплекса с белками, 5% в связи с другими ионами. В клубочках почек фильтруются только свободные ионы. Кальций реабсорбируется на всем протяжении почечных канальцев, из них 70% – в проксимальных канальцах, 20% – в толстом сегменте восходящего участка петли Генле. В этих отделах реабсорбция протекает пассивно по межклеточным щелям. Диффузии способствует активная реабсорбция натрия. В дистальных канальцах происходит активная реабсорбция Са?+ в комплексе с белками с помощью Са?+-АТФазы, и этот процесс регулируется витамином Д и паратиреоидным гормоном. Поскольку реабсорбция кальция в проксимальных канальцах и восходящем колене петли Генле носит пассивный характер и связана с реабсорбцией натрия, все лекарственные препараты, влияющие на транспорт натрия в этих отделах (например, ) блокируют реабсорбцию кальция. Напротив, тиазиды, ингибирующие обратное всасывание натрия на уровне дистальных канальцев, не действуют на активный захват кальция. Более того, в их присутствии реабсорбция кальция даже несколько

усиливается, уменьшая Са?+-урию. Этот эффект тиазидов в клинике используется у больных нефролитиазом для уменьшения камнеобразования путем снижения кальция в моче.

В кишечнике всасывается 65% поступающего с пищей фосфата. 55% фосфата плазмы крови находится в свободном состоянии, которые свободно фильтруются и затем реабсорбируются в канальцах. 80% реабсорбируется в проксимальных канальцах трансклеточно с помощью транспортера NaPi?-. Его активность ингибируется паратгормоном. Далее 10% фосфатных анионов реабсорбируется в дистальных канальцах, 2-3%- в собирательных трубках.

Магний в основном содержится в тканях: 55% в костной ткани, 45%- в мягких тканях и только 10% находится во внеклеточных жидкостях. Ионы Мg?+ из крови свободно фильтруются, затем реабсорбируются в канальцах (30% в проксимальном, 65% — в толстом восходящем колене петли Генле, 5% — в дистальных канальцах).

Осмотическое концентрирование и разведение мочи

В зависимости от состояния водного баланса организма почки могут выделять гипотоническую или гипертоническую мочу. В этом процессе участвует так называемой противоточно-поворотно-множительная система, в состав которой входят параллельно расположенные в мозговом слое отделы петли Генле, собирательные трубки и прямые сосуды. Принцип работы этой системы заключается в том, что при движении двух потоков жидкости в противоположных направлениях (по нисходящему и восходящему отделу петли Генле) осуществляется двухсторонний обмен натрия и воды через интерстициальную ткань и стенку канальцев петли Генле.

Изотоничная моча из проксимального канальца поступает в нисходящую часть петли Генле, стенка которой проницаема для воды, но относительно непроницаема для солей. В восходящем толстом отделе петли Генле стенка канальца не пропускает воду, но активно реабсорбирует натрий, хлор, калий без воды. Таким образом, в нисходящем отделе петли Генле моча становится все более концентрированной по мере продвижения к вершине петли. При этом значительно уменьшается объем мочи. В дальнейшем при движении вверх по непроницаемому для воды восходящему отделу и дистальному канальцу осмотическая концентрация внутри канальцев падает. В дистальных канальцах и собирательных трубках осуществляется вторая фаза концентрирования мочи. Осмотическая концентрация мочи в этом отделе зависит от антидиуретического гормона (АДГ).

При обычном водном режиме относительная плотность мочи за сутки колеблется в пределах 1008-1025 (осмолярность 100-900 мосм/л), что обусловлено неравномерным приемом жидкости в течение дня и другими факторами. При избытке воды в организме уровень АДГ в крови снижается и стенка собирательных трубок остается непроницаемой для воды и выделяются большие объемы гипотонической мочи. В условиях дефицита жидкости в

организме повышается секреция АДГ гипофизом, который взаимодействуя с V2 рецепторами повышает проницаемость клеток собирательных трубок для воды, способствует реабсорбции осмотически свободной воды. Моча становится концентрированной с уменьшением количества.

В механизме осмотического концентрирования мочи важное значение имеет мочевина. В отличие от наружной зоны мозгового вещества, где повышение осмоляльности обусловлено главным образом накоплением солей натрия, во внутреннем мозговом веществе в нем участвует мочевина. В мозговом веществе существует специальная система, обеспечивающая круговорот мочевины и ее удержание в почке. Главную роль в этом процессе играет способность АДГ увеличивать проницаемость для мочевины стенки тех частей собирательных трубок, которые расположены во внутреннем мозговом слое почек. В вышележащих отделах канальцев стенка собирательных трубок непроницаема для мочевины. Там из-за реабсорбции воды концентрация мочевины повышается, а ниже большие количества мочевины реабсорбируются в мозговое вещество, повышая осмоляльность интерстиция. Отсюда мочевина поступает в просвет тонкого восходящего отдела петли Генле и движется по канальцу. Далее мочевина вновь реабсорбируется под влиянием АДГ, что и обеспечивает беспрерывный ее круговорот в почке и объясняет важную роль мочевины в процессе осмотического концентрирования мочи. У детей грудного возраста в отличие от взрослых снижена функция по осмотическому концентрированию и разведению мочи. У них компенсаторная реакция на дегидратацию и гипергидратацию осуществляется в основном клубочками, а не канальцевым аппаратом почек. Примерно к концу первого года жизни заканчивается формирование осморегулирующей функции почек. В сохранении высокой осмоляльности интерстиция мозгового вещества также играют роль прямые артериолы (vasa recta). Они работают как противоточные обменники.

Кислотно-щелочное состояние и его регуляция

В процессе метаболизма в организме образуется некоторые количество кислот, часть ионов Н+ поступает с пищей, в связи с чем возникает необходимость выведения избытка кислот из организма.

К почечным механизмам поддержания КЩС относятся основные три механизма. Во-первых, секретируемые ионы водорода участвуют в реабсорбции бикарбоната. Важным местом реабсорбции НСО3- является проксимальный каналец, где 90% профильтровавшегося НСО3- всасывается обратно. Это осуществляется не за счет прямого транспорта, а посредством специального механизма, в котором участвует карбоангидраза и Na+/H+- обменник. Таким образом, интенсивная секреция Н+ используется для возвращения профильтровавшихся бикарбонатов.

Базолатеральная Просвет

мембрана канальца

НСО3- НСО3- H+? H+ + HCO3-

На данном этапе ионы Н+ находятся в постоянном круговороте, обеспечиваемом карбоангидразой, и элиминации Н+ с мочой не происходит. Ионы водорода секретируются на всем протяжении канальцев. Далее в дистальных участках нефрона экскреция кислот осуществляется двумя механизмами: за счет связывания Н+ с фосфатами и с аммиаком (NH3). Ближе к собирательным трубочкам к Na+/H+ обменнику подключается (а затем превалирует) Н+-АТФ-аза. Эти процессы происходят во вставочных клетках собирательных трубок.

Фосфаты и органические кислоты связываются с водородным ионом и экскретируются с мочой. Работают системы Н++НРО4?- ? Н2РО4 или Н++ органическая кислота. Их экскреция определяет так называемую титруемую кислотность. В регуляции КЩС участвуют несколько гормонов. Паратиреоидный гормон подавляет реабсорбцию фосфатов в проксимальном канальце и косвенно участвует в регуляции кислотно-щелочного равновесия. На уровне собирательных трубок в регуляции участвует альдостерон: стимулирует реабсорбцию Na+ и действие Н+-АТФазы. Экскреция Н+ с титруемыми кислотами ограничена. Поэтому наиболее эффективной системой экскреции Н+ является аммонийный механизм, составляющий 60% от суммарной экскреции Н+ почками. В проксимальном и дистальном канальцах из глутамина непрерывно образуется аммиак (NH3). Связывая Н+, он превращается в аммоний (NH4) и с мочой выделяется в виде NH4Cl. Доля экскретируемых с мочой свободных (незабуференных) водородных ионов незначительна. У новорожденных функция почек по регуляции кислотно-основного равновесия недоразвита, в связи с чем для его сохранения важно сбалансировать питание.

Другие функции почек

Функции почек многообразны. Они обладают не только экскретирующей, но и секретирующей функцией. В почках синтезируются ряд гормонов и другие активные вещества. В почечной ткани происходит катаболизм ряда биологически активных веществ ( , ПТГ и др.), поступающих в просвет канальца в составе . При почечной недостаточности катаболическая способность почек снижается, что приводит к избыточному накоплению их в крови. В почечной ткани происходит синтез глюкозы (), окисление жирных кислот. Благодаря многочисленным функциям, почки участвуют в регуляции , поддержании костно-минерального обмена. Нарушение названных функций имеет место при потере функционирующей паренхимы почек. Поэтому при развитии конечных стадий хронических болезней почек (ХБП) клинические симптомы болезни включают не только уремическую интоксикацию и нарушения водно-солевого баланса, но и анемию, гипертензию с сердечно- сосудистыми осложнениями и костные нарушения.

Гормоны и почки

Почки и эндокринная система тесно взаимосвязаны. В почках синтезируется ряд гормонов (ренин, витамин Д3, эритропоэтин и др.) Для некоторых гормонов почки служат органом-мишенью, другие же гормоны активно метаболизируются и выводятся ими. Именно комплексность функций почек обусловливает комплекс гормональных нарушений, наблюдающихся при хронической почечной недостаточности (ХПН).

Гормоны, образующиеся в почках Экстраренальные гормоны, действующие на почки Гормоны, метаболизируемые и выводимые почками

Дигидрооксихолекальциферол

— 1,25(ОН)2Д3

Эритропоэтин

Калликреин

Простагландины

Альдостерон и стероиды Вазопрессин (АДГ) Паратиреоидный гормон Кальцитонин Натрийуретический пептид предсердий Катехоламины Эндотелин Пептидные гормоны Стероиды Катехоламины Инсулин

Ренин-ангиотензин-альдостероновая система (РААС)

Ренин вырабатывается в юкстагломерулярном аппарате почек (ЮГА), находящемся в тесном контакте со специальной частью дистальных канальцев – macula densa. Ренин действует на ангиотензиноген (?-глобулин,

синтезируемый печенью) с образованием неактивного ангиотензина I, который под действием ангиотензинпревращающего фермента (АПФ) переходит в активный ангиотензин II. АПФ содержатся во многих тканях (почках, мозге, в сосудах, легких и др., во всех эндотелиальных клетках).

Биологическое действие ангиотензина II.

1) Вазоконстрикция

2) Стимуляция секреции альдостерона

3) Реабсорбция натрия в почечных канальцах

4) Активация симпатической нервной системы и выделения катехоламинов

5) Центральное действие (жажда, центральное прессорное действие, высвобождение АДГ)

Следует отметить, что в настоящее время к действию ангиотензина на ЦНС приковано повышенное внимание в связи с его влиянием на , симпатическую нервную систему, чувство жажды, на АДГ и натриевый аппетит. Самым важным действием ангиотензина II является непосредственное сокращение сосудов, стимуляция образования альдостерона в клубочковой зоне коры надпочечников и регуляция транспорта натрия в почках. РААС важна для поддержания гомеостаза натрия: при потере соли (диарея, рвота) стимулируется выделение ренина и увеличение уровня ангиотензина, что в свою очередь приводит к выбросу альдостерона, который способствует сохранению натрия в организме. Также ангиотензин II вызывает сокращение сосудов, поддерживая кровяное давление, несмотря на уменьшение объема крови и внеклеточной жидкости (при кровопотере, диарее, рвоте). Напротив, накопление натрия ингибирует РААС.

Витамин Д

Витамин Д3 (холекальциферол) вместе с парат-гормоном (ПТГ) является важным регулятором минерального обмена, и представляет собой жирорастворимую молекулу, подобную холестерину. Он поступает в организм с пищей (молочные продукты) и образуется в коже под действием ультрафиолетовых лучей. В печени витамин Д3 превращается в 25-гидроксивитаминД3 (25-ОН Д3). Основной процесс биоактивации протекает с участием фермента 1?-гидроксилазы только в почках, где синтезируется 1,25-дигидроксивитаминД3 (1,25(ОН)2Д3), являющийся активным гормоном, оказывающим действие на кости, почки и желудочно-кишечный тракт. Он увеличивает всасывание кальция и фосфатов в кишечнике, взаимодействуя с ПТГ, способствует высвобождению кальция из костей и стимулирует реабсорбцию кальция из проксимальных канальцев почек. Нарушение метаболизма и действия витамина Д3 характерно для следующих заболеваний почек: Тубулопатии, ХБП:

1. В конечных стадиях ХБП отмечается снижение превращения неактивного 25-ОН Д3 в активный метаболит 1,25(ОН)2Д3? что ведет к развитию почечной остеодистрофии, вторичному гиперпаратиреозу. Поэтому при ХБП 3-5

стадии уровень 1,25(ОН)2 Д3 и Са снижается, что требует применения препаратов Д3 под контролем.

2. У больных синдромом Фанкони (нарушение канальцевой реабсорбции глюкозы, фосфатов, бикарбанотов, аминокислот, изменения костей) наблюдается снижение способности почек активировать витамин 1,25(ОН)2 Д3.

3. При заболевании с резистентностью рецепторов 1,25(ОН)2Д3 к витамину Д (витамин Д-зависимый II типа) имеет место мутация генов этих рецепторов, в связи с чем почки не отвечают на физиологические концентрации витамина Д3.

4. Д-зависимый 1 типа возникает в результате мутации гена1?-гидроксилазы и дефицита 1,25(ОН)2 Д3.

5. Идиопатическая гиперкальциемия, вероятно, связана с избыточным образованием в почках 1,25(ОН)2 Д3.

В настоящее время выявляется дефицит витамина Д в большой популяции населения земного шара.

Эритропоэтин

синтезируется почками и регулирует образование и развитие , выход ретикулоцитов в кровь. Как синтез, так и высвобождение эритропоэтина регулируется концентрацией кислорода в тканях. Активность почечного эритропоэтина также стимулируется андрогенами (что обусловливает более высокий уровень гемоглобина у мужчин), тиреоидными гормонами, простагландинами Е. Ренальная анемия, обусловленная ХПН, вызвана уменьшением синтеза эритропоэтина. Успешная трансплантация почек обычно повышает его синтез и устраняет анемию. Для коррекции анемии при ХПН применяетя рекомбинантный эритропоэтин.

Почечные простагландины

Почки – место образования всех основных простаноидов: простагландина Е2 (PGE2), простациклина и тромбоксана. PGE2 – преобладающий простагландин, синтезируемый в мозговом слое почек. Синтез тромбоксана, обладающего сосудосуживающим и агрегирующим действием, резко увеличивается при обструкции мочеточников. и нестероидные противовоспалительные препараты (НПВП) блокируют образование простагландинов. Этим объясняется как их противовоспалительный эффект, так и неблагоприятное действие на почки. Так, может вызвать падение почечного кровотока и СКФ, задержку солей и воды. и могут быть причиной папиллярного некроза и нефропатии, поскольку, блокируя выработку простагландинов и их сосудорасширяющее действие, уменьшают почечный медуллярный кровоток.

Естественными продуктами обмена веществ являются углекислый газ, вода, мочевина, неорганические соли, азотсодержащие продукты и многое другое. Эти вещества, накапливаясь в организме, могут привести к нарушению синтеза ферментов, гормонов, поддержанию гомеостаза.

Водяные пары выводятся через дыхательные пути (через легкие).

Потовые железы помогают удалить остатки воды, соли, мочевину и также тепло. В коже работают сальные железы, которые обеспечивают смазку кожи и защищают её.

К органам выделения относится также и пищеварительный тракт. С калом удаляются не переваренные продукты и плотные отходы.

Главным экскреторным органом являются почки. Они регулируют объем и химический состав крови за счет избирательного выделения из организма воды и солей. Прекращение функции почек приводит организм к гибели через 3-4 недели.

Функции почек делятся на экскреторные -

  1. Поддержание осмолярности плазмы крови на уровне 300 мОсм/кг путем выведения избытка воды.
  2. Поддержание концентрации электролитов плазмы
  3. Поддержание pH плазмы за счет выведения протонов H+ и реабсорбции аниона HCO3
  4. Выведение азотсодержащих продуктов обмена белка - мочевины, мочевой кислоты и креатинина.

и - неэкскреторные -

  1. Образование ренина - факторы регуляции кровяного давления
  2. Образование эритропоэтина - факторов, стимулирующих эритропоэз в красном костном мозге.
  3. Превращение витамина Д в активную форму
  4. Разложение инсулина
  5. Образование простогландина

Экскреторная функция почек осуществляется за счет образования и выведения мочи. При этом происходит процессы фильтрации, реабсорбции и секреции. Все эти процессы направлены главным образом на процесс экскреции.

Моча является стерильным раствором. Уринотерапия - это использование мочи, как лечебного средства. Моча - это водный раствор азотсодержащих соединений и солей. Она обычно прозрачна - янтарного или бледно-желтого цвета. Реакция мочи слабокислая, но pН может колебаться от 4.5 до 8. Плотность = 1,002-1,04. На долю воды в моче приходится 96%, а 4% составляют оргнаические и неорганические вещества плотного остатка.

Среднее количество суточного выделения мочи составляет 1,5 л, в ней содержится 60 г растворенных веществ. 25 г - неорганические вещества и 35 - органические вещества - мочевина, мочевая кислота, креатинин. Постоянное выделение мочи называется полиурией. Временное повышение выделение мочи - диурез. Уменьшение выделения мочи обозначается как олигурия.

Моча образуется в парных органах почках. Почки лежат в забрюшинном пространстве. Каждая почка окружена капсулой, которая ограничивает растяжение почек и препятствует набуханию почек. Это важно для кровообращения почек.

На внутренней стороне располагаются ворота почек, в области ворот находится почечная лоханка с мочеточником, почечная артерия, почечный нерв и выходит почечная вена и лимфатический сосуд. Длина = 10-12 см, ширина = 5-6см, толщина =3-4 см. Верхний полюс почки соответствует уровню 12 ребра, а нижний, на уровне L3. Левая почка располагается на 1,5- 2 см выше правой.

На разрезе видно корковое вещество и мозговое вещество почки.

Мозговое вещество состоит из конической формы пирамид, которые широким основанием направлены к корковому веществу, а суживающим концом, сосочками открывается в лоханку. Для функции почек очень важным является кровоснабжение почек и кровь получает через почечную артерию, которая отходит непосредственно от аорты. Артерия входя в почку делится на междолевые артерии. От них идут дугообразные артерия, далее междольковые артерии, далее приносящие артериолы, участвующие в формировании капиллярных клубочков. Приносящая артериола формирует первичную сеть капилляров, которые затем сливаются в выносящую артериолу и выносящая артериола с диаметром в 2 раза меньше. Выносящая артериола формирует вторичную сеть капидяров, которые окружают канальцевую часть нейтрона. Часть выносящих артериол распадаются не на капиляры, а на прямые тонкие сосуды, идущие параллельно канальцевой части. Уже из вторичной сети капилляров формируются венулы, обеспечивающие отток венозной крови в систему почечных вен.

Структурно-функциональной единицей почки является нефрон.

В состав нефрона входит почечное тельце, которое состоит из петель капилляров, образованной приносящей артериолы(30 - 50 петель капиляров). Этот клубочек окружен капсулой Шумлянского - Боумена. Капсула состоит из висцерального и париетального листков. Между ними образуется просвет, полость, от которой начинается канальцевая часть нефрона представлена проксимальным извитым канальцем, который переходит в проксимальный прямой каналец. Следующей частью является петля Генле - тонкий нисходящий, тонкий восходящий и толстый восходящий отдел, который дальше переходит в дистальный извитой каналец. Далее он переходит в соединительный каналец, коорый переходит в собирательную трубочку.

На вершине почечных пирамид в лоханку. Количество нефронов в каждой почке от 1 млн до 1,2 млн.

Особенность строения почечного тельца. Оно имеет размер около 200 мкм. Клубочек капилляров оказывается вдавленный в двухстенную капсулу. Диаметр выносящей артериоллы в 2 раза меньше. Клубочек капилляров вместе с капсулой образуют структуру почечного фильтра, который отделяет кровь от просвета капсулы, в которой скапливается первичная моча. В структуре почечного фильтра первым элементом будет являться эндотелий капилляров. Особенностью капилляров будет то что крупные отверстия пор эндотелия - 100 нм. Эндотелий лежит на базальной мембране с толщиной 0,2-0,3 мкм. Она построена из фибриллярных нитей, гликопротеинов, которые имеют на себе отрицательный заряд. Эти фибриллярные нити образуют плетения и формируют поры 4 нм. К базальной мембране снаружи прилежит висцеральный листок капсулы, который образован специализированными отросчатыми клетками подоцитами, которые своими выростами соединяются с базальной мембраной. Отростки подоцитов переплетаются и образуются щелевидное пространство, которое имеет толщину 25-30 нм. Между базальной мембраной и подоцитами образованы мезангиальные клетки, которые являются аналогами перицитов для других капилляров. Эти клетки расположены между петлями капилляров, они обладают сократительной функцией, поэтому при сокращении они могут выключать часть капилляров клубочков и менять площадь фильтрующей поверхности. Мезангиальные клетки могут секретировать различные вещества, захватывать иммунные комплексы и вовлекаться в воспалительный процесс в клубочках.

Почки имеют 2 вида нефронов:

  1. Корковые нефроны - короткая петля Генле. Располагаются в корковом веществе. Выносящие капилляры образуют капиллярную сеть, облают ограниченной способностью к реабсорбции натрия. Их в почке насчитывается от 80 до 90%
  2. Юкстамедуллярный нефрон - лежат на границе между корковым и мозговым веществом. Длинная петля Генле, которая уходит глубоко в мозговое вещество. Выносящая артериола в этих нефронах имеет одинаковый диаметр с приносящей. Выносящая артериола образует тонкие прямые сосуды, глубоко проникающие в мозговое вещество. Юкстамедуллярные нефроны - 10-20%, они обладают повышенной реабсорбцией к ионам натрия.

Клубочковый фильтр пропускает веществ с размером 4 нм и не пропускает вещества - 8 нм. По молекулярной массе свободно проходят вещества с молекулярным весом 10000 и постепенно снижается проницаемость по мере увеличения веса до 70000 веществ, которые несут отрицательный заряд. Электронейтральные вещества могут проходить с массой до 100000. Суммарная площадь фильтрующей мембраны 0,4 мм, а общая площадь у человека, а общая площадь 0,8-1 кв м.

У взрослого человека в состоянии покоя через почку протекает 1200 - 1300 мл в минуту. Это будет 25% минутного объема. Фильтруется в клубочках плазма, а не сама кровь. С этой целью употребляется гематокрит.

Если гематокрит 45%, а плазма 55%, то количество плазмы составит = (0,55*1200)=660 мл /мин и количество первичной мочи = 125 мл /мин (20% от плазменного тока). За сутки = 180 л.

Процессы фильтрации в клубочках зависят от трёх факторов:

  1. Градиент давления между внутренней полостью капилляра и капсулой.
  2. Структура почечного фильтра
  3. Площадь фильтрующей мембраны, от которой будет зависеть объемная скорость фильтрации.

Процесс фильтрации относится к процессам пассивной проницаемости, которая осуществляется под действием сил гидростатического давления и в клубочках фильтрационное давление будет складывать из гидростатического давления крови в капиллярах, онкотического давления и гидростатического давления в капсуле. Гидростатическое давление = 50-70 мм рт.ст., т.к. кровь идет прямо из аорты (её брюшной части).

Онкотическое давление - образуемое белками плазмы. Белковые молекулы, крупные, они не соизмеримы с порами фильтра, поэтому пройти через него не могут. Они будут препятствовать процессу фильтрации. Оно будет составлять 30 мм.

Гидростатичесоке давление образовавшегося фильтрата, который находится в просвете капсулы. В первично моче = 20мм.

ФД=Рг-(Р0=Рм)

Рг - гидростатическое давление крови в капиллярах

Ро-онкотическое давление

Рм - давление первичной мочи.

По мере движения крови в капиллярах онкотическое давление растет и фильтрация на определенном этапе прекратится, т.к. оно будет превышать силы способствующие фильтрации.

За 1 минуту образуется 125 мл первичной мочи - 180 л за сутки. Конечной мочи - 1-1,5 л. Происходит процесс реабсорбции. Из 125 мл в конечную мочу попадет 1 мл. Концентрация веществ в первичной моче соответствует концентрации растворенных веществ в плазме крови, т.е. первичная моча будет изотонична плазме. Осмотическое давление в первичной моче и плазме одинаково - 280-300 мОс молей на кг

Скорость клубочковой фильтрации определяется по коэффициенту очищения инулина.

Инулин - это полисахарид, который обладает способностью проходить через почечный фильтр и не подвергается реабсорбции. Он безвреден для организма. Испытуемому вводят инулин в кровь, внутривенно. Через некоторое время определяют концентрацию инулина в плазме. Аналогичная концентрация инулина в первичной моче. Далее у исследуемого определяют количество выведенной конечной мочи и концентрацию инулина в моче(конечной) У нас остается одно неизвестное- объем первичной мочи.

СКФ(мл/мин)= Мин*Vмочи / Пин(концентрация инсулина)

Далее будут происходить процессы реабсорбции . Они осуществляются эпителием канальцевой части и зависят от особенности строения клеток. Проксимальный извитой каналец выстлан клетками кубического эпителия на поверхности которого имеются микроворсинки, щеточная кайма. Одна клетка до 6,5 тысяч ворсинок. Клетки соединены плотными контактами и в то же время между ними образуются боковые межклеточные пространства. В проксимальном прямом канальце ворсинок на клетку становится меньше и клетки укорачиваются. В тонком сегменте петли Генле эпителий почечный уплощается, ворсинки выражены слабо или могут вообще отсутствовать. Длина петель Генле от 2- до 25 мм. В дистальном отделе нефрона клетки становятся кубическими и они образуют короткие и широкие ворсинки. Дистальный извитой каналец имеет длину до 5 мм и в начальной его части расположено плотное пятно (macula dence) - это натриевый рецептор. Дистальный извитой каналец впадает в извитую собирательную трубочку длиной 20 мм. В этих трубочках выделяют P(principal) клетки и эти клетки реагируют на действие антидиуретического гормона, который повышает проницаемость для воды. Еще выделяют вставочные I клетки. Они обнаружены в собирательных трубочках и дистальном извитом канальце. Клетки с липидными включениями - секретируют простогландины, которые могут выделяться и в собирательных трубочках. Процессы реабсорбции осуществляются почечным эпителием и могут проходить как пассивно, так и активно. Пассивная реабсорбция называется обязательной реабсорбцией и она характерна для проксимальных отделов нефрона. А вот активная реабсорбция является факультативной или необязательной. Если пассивная не требует энергозатрат, то активная связана с переносом веществ против концентрационного градиента. В проксимальном извитом канальце из 125 образовавшихся будет всасываться 100 мл, в петле Генле - 7 мл, в дистальном извитом канальце 12 мл. и в собирательных трубочках 5. 1 мл. - конечная моча.

На проксимальную реабсорбцию приходится - 60-80% фильтрата. Всасываются все физиологически ценные электролиты и питательные вещества - глюкоза, аминокислоты, витамины и низкомолекулярные белки. Реабсорбируется мочевая кислота, 2/3 ионов натрия, хлора, магния, кальция, сульфаты, фосфаты, бикарбонаты. Эпителий проксимального канальца могут секретировать органические кислоты, протоны водорода и некоторые лекарственные вещества - пенициллин, сульфаниламиды. Особенностью проксимальной реабсорбции всасываются с эквивалентным количеством воды и поэтому изоосмотичность мочи не нарушается. Натрия проходит через апикальную мембрану по электрохимическому градиенту. Внутри клеток натрий движется по эндоплазматической сети, а из клетки он удаляется активным транспортом натриево-калиевого насоса. Глюкоза поступает в проксимальный каналец в 100 мг в минуту. Перенос глюкозы внутрь клетки происходит с помощью специальных переносчиков и этот процесс натрий зависимый. Этот комплекс протаскивается внутрь клетки. Транспорт глюкозы - вторично активный транспорт. Всасывание глюкозы ограничено наличием переносчика. Если глюкозы выделяется много, при повышении концентрации ее в крови, то глюкозы будет выделяются много и на нее будет не хватать переносчиков. Глюкоза остается в моче и будет выводится во вторичной моче. - > полиурия. Подвергаются всасыванию аминокислоты и в проксимальном отделе они реабсорбируются на 99%. Моча из проксимального извитого канальца поступает в петлю Генле. В нисходящем отделе петли Генле начинается повышение осмотической концентрации мочи, за счет того, что нисзодящее колено петли Генле пропускает воду, но не пропускает вещества. Идет концентрирование мочи в нисзодящем колене, за счет всасывания воды.

Восходящее колено петли Генле проницаемо для осмотически активных веществ, но овду не пропускает и за счет активной работы эпителия вещества переводятся из канальца в интерстициальные просвет, а в восходящем колене давление падает. Моча становится гипотоничной, но в интерстиции повышается осмотическое давление. Поскольку нисходящее и восходящее колено идут очень близко друг от друга, они формируют поворотно-противоточную систему, которая способствует всасыванию из нисходящего колена и всасыванию осмотических веществ из восходящего. В петле Генле происходит дополнительное всасывание воды и веществ - 3-7 мл.

Регуляция почками электролитного баланса.

Жидкостные пространства организма. У здорового взрослого человека, количество воды составляет 60% от веса тела. Вода в теле распределяется в 2х жидкостных пространствах - внутриклеточная жидкость(2/3 - 40% тела) и внеклеточная жидкость - 1/3 - 20% от веса тела. Общий, циркулирующий объем крови составляет 1/3 от объема внеклеточной жидкости. 2/3 - интерстициальная жидкость. Это правило третей. Оно удобно в клинике при расстройстве жидкостных и электролитных расстройств. Мужчина - 70 кг - 40л воды. 25л - внутри клеток. 15л - во внеклеточной жидкости и 5л из внеклеточной жидкости - объем крови. Т.к кровь содержит форменные элементы, величина объема плазмы определяется с помощью гематокрита.

Гематокрит в норме - 0.4-0.45. На плазму будет приходится 0.6-0.55.

Еще есть жидкость, которая содержится в полостях - плевральная, внутриглазная, внутрисуставная и тд. Они в целом составляют величину - 1 л.

В жидкостях находятся электролиты.

Натрий - 135-145 ммол/л

Внутриклеточная жидкость(2/3) Внеклеточная жидкость(1.3)

На увеличение натрия и повышенное потребление воды, почки реагируют натрийурезом и диурезом. Ограничение потребления натрия - антинатрийурез и антидиурез. При интенсивно потоотделении, рвоте, поносе - приводят к интенсивным экстраренальным потерям натрия. Большинство людей потребляет большее количество соли, чем они нуждаются. У больных адиссоновой болезнью - потребление большего количество соли из за больших потерь натрия.

Увеличение выделения натрия с водой наблюдается при:

1. увеличенном объеме жидкости в организме.

2. усиленном поглощении натрия.

3. болезни Аддисона.

4. усиленной потере солей в почках.

Уменьшение выделение натрия с мочой наблюдается при:

1. Отеки разного происхождения.

2. Острая кровопотеря

3. Низкое потребление натрия

4. Лечение минералокортикоидами

5. Усиленная потеря натрия экстраренальными путями

Регуляция выведения натрия.

Регулируется гемодинамическими и физическими факторами. Увеличение перитубулярного капиллярного гидростатического давления и снижение коллоидноосмотического давления, уменьшают реабсорбцию натрия. Понижение перитубулярного гидростатического давления и повышение коллоидноосмотического повышает реабсорбцию натрия и воды. Большое значение представляет собой система - ренин - ангиотензин - альдостерон. Очень важная функция в регуляции натриевого гомеостаза.

Очень важен Юкстагломерулярный аппарат почек . В состав юкстагломерулярного аппарата входит следующий компонент - специализированные эпителиоидные клетки , которые в основном окружают приносящую афферентную артериолу и эти клетки внутри содержат секреторные гранулы с ферментом ренином. Вторым компонентом аппарата является плотное пятно (macula densa ), которое лежит в начальной части дистальной части извитого канальца. Этот каналец подходит к почечному тельцу. Сюда же относят клетки интестиция между выносящей и приносящей артериоллы - клетки околососудистого полюса клубочка. Это экстраклубочковые мезангеальные клетки.

Этот аппарат реагирует на изменение системного кровяного давления, местного клубочкового давления, на повышение концентрации хлористого натрия в дистальных канальцах. Это изменение воспринимается плотным пятном.

Юкстагломерулярный аппарат реагирует на возбуждение симпатической нервной системы.

При всех вышеперечисленных воздействиях начинается усиленное выделение ренина, который непосредственно поступает в кровь.

Ренин - Ангиотензиноген (белок плазмы крови) - Ангиотензин 1 - Ангиотензин 2 (под действием Ангиотензин превращающий фермент, в основном в легких). Ангиотензин 2 - физиологически активное вещество, которое действует в трёх направлениях:

1. Он влияет на надпочечники, которые стимулируют альдостерон

2. На головной мозг(гипоталамус), где стимулирует выработку АДГ и стимулирует центр жажды

3. Оказывает прямое влияние на кровеносных сосуды мышц - сужение

При болезни почек повышается давление. Давление повышается и при анатомическом сужение почечной артерии. Это дает стойкую гипертонию. Влияние ангиотензина 2 на надпочечники, приводит к тому, что альдостерон вызывает задержку натрия в организме, т.к. он в эпителиях почечных канальцев усиливает работу натрие-калиевого насос. Он обеспечивает энергетическую функцию этого насоса. Альдостерон способствует реабсорбции натрия. Он будет способствовать выведению калия. Вместе с натрием идет вода. Задержка воды происходит, т.к. выделяется антидиуретический гормон. Если альдостерона у нас не будет, то начинается потеря натрия и задержка калия. На выведение натрия в почках влияет предсердный натрий - уретический пептид. Этот фактор способствует расширению сосудов, увеличиваются процессы фильтрации и происходит развитие диуреза и натрийуреза.

Конечное действие - уменьшение объема плазмы, снижение периферического сосудистого сопротивление, понижение среднего артериального давления и минутного объема крови.

На выведение натрия почками влияют простогландины и кинины. Простогландин E2 увеличивает выведение почками натрия и воды. Брадикинин как сосудорасширяющее вещество действует аналогично. Возбуждение симпатической системы повышает реабсорбцию натрия и снижает его выделение с мочой. Это эффект связан с сужением сосудов и уменьшением клубочковой фильтрации и с прямым влиянием на всасывание натрия в канальцах. Симпатическая система активирует ренин - ангиотензины - альдостерон.

Калий. Калий свободно фильтруется но 90% всасывается в проксимальном извитом канальце. 10% достигает дистальных отделов нефрона, где происходит наиболее тонкая регуляция содержания калия в моче за счет секреторных процессов. Выделение калия с мочой в прямой зависимости от его концентрации с плазмой. Содержание калия в моче увеличивается, если содержание его в плазме начинает превышать 4 ммол/л. Выведению калия способствует альдостерон, т.к. он способствует его секреции.

При болезни Адиссона в условиях сниженного образования альдостерона может возникнуть резкое повышение содержания калия в крови - гиперкалимия. Она опасна тем, что она вызывает аритмию в сердце. Повышенное содержание калия может вызвать остановку сердца в диастолу. Гиперкалимия сопровождается развитием ацидоза, при опухолях надпочечников и увеличении образования альдостерона концентрация калия в плазме уменьшается. Развивается гипокалимия вместе с метаболическим алкалозом. Гипокалимия приводит к гиперполяризации нервных мембран и возникновению параличей.

Кальций - 900 мг за сутки с молоком и молочными продуктами. Кальций плохо всасывается в кишечнике и 750 мг покидает вместе с каловыми массами, а 150 - выводится с мочой. Уровень его концентрации в плазме - 2,2-2,6.

40% кальция с плазмой связано с белками, 60% находится в ионизированном состоянии.

10% ионизированного кальция образует связи с анионами цитрата, фосфата и карбоната и сульфата. Ионизированный кальций свободно проходит клубочковый фильтр, но в конечной моче остается из 100% поступившего кальция 0,5-2%.

60% кальция реабсорбируется в проксимальном канальце, 20 % в толстом восходящем колене петли Генле и 5-10% реабсорбируется в дистальных трубочках.

Уменьшение содержания кальция в плазме стимулирует выработку парат гормона, а увеличение - тормозит. Парат гормон способствует реабсорбции кальция в петле генле и в дистальных отделах нефрона. На уровень содержания кальция влияет гормон щитовидной железы - кальцитонин. Он способствует выведению кальция с мочой, а по другим данных - уменьшает реабсорбцию кальция в почках.

Магний - 0,75 - 1,0. Содержится главным образом во внутриклеточной жидкости. Большая часть его находится в костях. 20% связан с белками, 80% - ионизированный. Он свободно проходит клубочковый фильтр.

С мочой выделяется 2 г солей магния в сутки. Реабсорбция - 25% в проксимальном сегменте, 65% в петле генле. Очень мало реабсорбируется в дистальном отделе.

Реабсорбция фосфата. Жидкие среды организма содержат органические фосфаты, в форме фосфолипидов и органических эфиров фосфатов. Органические фосфаты - однозамещенные(80%) и 20% двухзамещенные соли фосфорной кислоты.

Почки ежедневно фильтрует 6 г фосфатов, из которых 5,3 подвергаются реабсорбции

5% в петле Генле. Соли фосфорной кислоты - буферная система, которая активно работает в почках.

Паратгормон тормозит всасывание фосфатов в проксимальном сегменте и, таким образом, увеличивает выведение их с конечной мочой. Секреция является активным процессом. С помощью нее происходит удаление веществ, которые не могут пройти через почечный фильтра - краски, контрастное вещество, лекарственные препараты, ионы калия, мочевина, мочевая кислота, креатинин. Все эти вещества могут выводится за счет процессов секреции. Азотсодержащие вещества до 30г. Выводятся с мочей. 90% мочевой кислоты реабсорбируется. Креатинин выводится с мочой в количестве 1,8 г в сутки. Не летучие фрагменты обмена, чужеродные вещества. Появляются аминокислоты, белки в моче.

Почки участвуют в регуляции поддержания pН плазмы крови, которая в норме 7,36-7,44. Величина значения pН - порциальное давление углекислого газа, концентрацией нелетучих кислот и состоянием щелочного резерва. Не летучие кислоты нейтрализуются основаниями щелочного резерва. Почки подвергают их обработке и частично или полностью.

Почечный эпителий способен к активной секреции протонов водорода, причем в проксимальном5 извитом канальце, происходит секреция протонов водорода, по механизму антипорта при всасывании натрия. Протон водорода появляется при диссоциации угольной кислоты. Угольная кислота образуется из углекислого газа и воды под действием карбоангидразы. Затем она диссоциирует на протон водорода и анион карбоната. В канальце протон водорода может взаимодействовать с анионами бикарбоната с образованием угольной кислоты и распад угольной кислоты приводит к появлению воды и углекислого газа. Из канальцевой части происходит реабсорбция воды и углекислого газа, которые поступают в кровь.

В дистальных отделах нефрона секреция протонов водорода осуществляется водородным насосом калий- H- атфаза, причем в дистальных отделах этот процесс связан с затратой энергии. Если калий не выделяется, то протоны водороды накапливаются в крови. Возникает ацидоз. Транспорт и секреция протона водорода в дистальных отделах. Этот процесс осуществляют I клетки.

NH3+H+ -> NH4

Протон водорода превращает в щелочные фосфаты, в щелочные фосфаты кислые.

При абсорбции бикарбоната натрия натрий поглощается, а протон водорода выделяется. Нарушение функций почек может сопровождаться нарушением кислотно-щелочного равновесия.

Значение почек в регуляции водного обмена.

Почки регулируют не только выведение электролитов но и воды.

За сутки фильтруется 180 л первичной мочи. Установлено, что одно и тоже количество солей почки могут выводить в разных объемах воды. Почка может выводить 500 мл мочи с концентрацией 1400 мАСмоль.

Почки могут выводит 23,3 литра с концентрацией 30 мАс молей. Эти цифры отражают два существенных момента. Реабсорбции подвергается 87% воды, если объем конечной сочи 23 литра.

У животных способность к концентрированию еще выше - у крыс 3200 мАс молей, а у степных грызунов - 5000мАСмолей.

Антидиуретический гормон- вазопрессин - выделяется задней долей гипофиза. Он влияет на главные P клетки собирательных трубочек. Под его воздействием в апикальных мембранах происходит увеличение белковых водных каналов, которые называют аквапорины и это увеличивает процессы реабсорбции.

Если на V1 - рецепторы гладких мышц сосудов. Он запускает увеличение кальция, через диацилглицерол и инозилфосфат.

Механизмы регуляции осмотического давления.

Увеличение осмоляльности внеклеточной жидкости приводит к увеличению секреции АДГ, задержка воды в организме, стимулируется центр жажды и мочи будет выделяться мало.

Снижение объема внеклеточной жидкости боль, эмоции, стресс усиливают выработку АДГ, тошнота, рвота, вертикальное положение тела.

Морфий, никотин, барбитураты повышают выработку АДГ, ангиотензин 2 стимулирует выработку АДГ. Уменьшают выработку АДГ - снижение осмотического давления плазмы, увеличение объема внеклеточной жидкости, горизонтальное положение тела и прием алкоголя.

Водный диурез при большом потреблении жидкости и макс. Достигнет через 40 минут. Акт питья жидкости вызывает угнетение образования АДГ. Максимальный водный диурез, который возможен в почках это 16 мл. в минуту. Если водная нагрузка превышает этот предел, то ткани начнут набухать, вода будет задерживаться и наступит отравление водой. Осмотический диурез наступает, когда в канальцевой части нефрона остаются осмотически активные вещества и происходит увеличение выделения мочи.

Манитол - диуретик - не подвергается реабсорбции и поэтому его назначении вызывает осмотический диурез.

Выведение мочи.

Перистальтическое сокращение мочеточника. Начинаются в почечной лоханке и частота от 1 сокращения за 10 секунд, до 1 сокращения в 2-3 минуты. Скорость волны 3 см в секунду. Симпатическая угнетает выведение мочи, а парасимпатическая увеличивает.

Содержится большое количество болевых рецепторов и при их закупорке возникают боли - почечная колика. При этом возникает уретроренальный рефлекс, который тормозит образование мочи в почках.

Косое вхождение в области треугольника, способствует пережатию в отсутствии перистальтики. Медленное поступление мочи по мочеточникам обеспечивает медленное нарастание внутрипузырного давления и гладким мышцам пузыря присуще свойство пластического тонуса, при котором происходит приспособления к объему мочи.

Первые ощущении мочевого пузыря при скоплении 150 мл мочи. Нормальный объем мочевого пузыря взрослого - 300-400 мл. Мочевой пузырь имеет 2 сфинктера, внутренний гладкомышечный и наружный поперечно полосатый.

Оба сфинктера находятся в состоянии тонуса. При растяжении мочевого пузыря вызывает возбуждение парасимпатических центров 2-4 крестцовых сегментов. Спинного мозга. Это приводит к понижению тонуса сфинктера и вызывает его расслабление, а к мышцам мочевого пузыря идет сигнал для их сокращения

Наружный сфинктер находится под контролем головного мозга.

Основными функциями почек являются экскреторная и гидроуретическая. Первая обеспечивает выведение с мочой всех подлежащих удалению продуктов метаболизма и чужеродных (токсических и безразличных) веществ. Вторая регулирует постоянство объема внеклеточной жидкости.

Мочеобразование является отражением многих функций почки, направленных к поддержанию постоянства внутренней среды. В полость клубочка диффундирует часть воды плазмы вместе с растворенными в ней неорганическими и кристаллическими органическими веществами с определенной величиной молекул за счет фильтрационного давления, представляющего разность между гидростатическим давлением в капиллярах клубочков, с одной стороны, и суммой онкотического давления плазмы и давления в клубочковой капсуле - с другой. Жидкость клубочков по составу равнозначна ультрафильтрату плазмы. Осмотическое давление жидкости клубочков, ее электропроводность, рН, а также содержание в вей глюкозы, натрия, фосфатов, креатинина, мочевины и мочевой кислоты соответствуют тем же показателям плазмы. За 1 мин. в клубочках почки человека образуется в среднем 125 мл фильтрата, а мочи выделяется за 1 мин. всего 1 мл. Эпителий канальцев обладает способностью по-разному транспортировать различные вещества; одни возвращаются из просвета канальцев в кровь (реабсорбция), другие извлекаются из крови в полость канальца (активная экскреция). В проксимальном отделе канальцев полностью реабсорбируется глюкоза, около 4/5 профильтровавшегося натрия и хлоридов; происходит уменьшение клубочкового фильтрата на 7/8. Осмотическое давление мочи в этом отделе канальцев равно давлению крови. Вещества, которые должны выводиться из организма (в частности, мочевина), также частично реабсорбируются в проксимальном отделе канальцев, но так как стенка канальцев сравнительно устойчива для проникновения через нее мочевины, то последняя концентрируется в значительных количествах (в 60 раз).

В дистальных отделах канальцев и собирательных трубках происходит образование окончательной мочи. Поскольку здесь происходит активная абсорбция (реабсорбция против электрохимического градиента) и она крайне изменчива, то ее называют факультативной реабсорбцией. Концентрирующий механизм почек осуществляется по принципу противоточно-поворотной системы: по двум параллельным коленам и петле Генле моча движется в противоположных направлениях (рис. 6). Восходящее колено водонепроницаемо, а клетки его способны активно абсорбировать натрий, направляя его в интерстиций, чем создается градиент концентрирующего механизма. Нисходящее колено петли проницаемо для воды и натрия, поэтому между мочой в нисходящем колене петли Генле и интерстициальной жидкостью устанавливается равновесие. По мере накопления натрия в интерстиции он диффундирует в петлю, а вода уходит из нее. Между восходящими и нисходящими коленами петли Генле устанавливается поперечный градиент в 200 миллиосмолей (осмоль, или 1000 миллиосмолей,- количество вещества, которое будучи растворено в 1 л воды, развивает осмотическое давление 22,4 атм.), тогда как по длине петли интегрированный градиент равен 2000 миллиосмолей, что и обеспечивает концентрирование мочи в 7 раз.

Рис. 6. Схема противоточно-поворотной системы петли Генле. Вертикальные стрелки - направление тока мочи в коленах. Горизонтальные стрелки: I - активный транспорт натрия клетками восходящей части петли, создающий поперечный градиент; 2 - выход воды из собирательной трубки в процессе факультативной реабсорбции.

Натрийуретическая функция почек обеспечивает постоянство концентрации натрия в крови. За сутки в клубочковый фильтрат почек поступает около 600 г натрия, а выделяется его с мочой всего несколько граммов. Почка осуществляет осморегуляцию за счет способности эпителия канальцев реабсорбировать Na из просвета канальцев в кровь. В проксимальном отделе нефрона реабсорбируется 85% Na, являющегося основной движущей силой реабсорбции воды. Реабсорбция Na эпителием канальцев осуществляется активно за счет ферментативных систем. Основная роль в этом процессе принадлежит дегидрогеназе янтарной кислоты. Активность этого процесса доказывается различным содержанием Na в канальцах и плазме (соответственно 60 мэкв/л против 140 мэкв/л). Дистальная реабсорбция Na крайне изменчива. Содержание Na в жидкости канальцев может достигать всего 8 мэкв/л, что обеспечивает значительный градиент. Основная роль в регуляции выделения Na принадлежит гормону надпочечников (см.) - альдостерону, который вызывает усиление реабсорбции Na. Отсутствие альдостерона ведет к прекращению дистальной реабсорбции Na и к гипонатриемии.

Почки являются главным регулятором сохранения водного баланса организма. Около 99% воды реабсорбируется в канальцах, причем около 85% - изоосмотически в проксимальных отделах канальцев. Однако для образования окончательной мочи гораздо большее значение имеет дистальная реабсорбция воды. Последняя возрастает под действием антидиуретического гормона задней доли гипофиза, когда клетки дистальных отделов нефрона выделяют гиалуронидазу, которая осуществляет деполимеризацию гиалуроновых комплексов межклеточного вещества. Вследствие этого межклеточная мембрана становится проницаемой для воды, которая (в силу осмотического градиента) уходит из канальцев. Тем самым и осуществляется антидиурез (так называемый антидиуретический рефлекс).

Главным стимулятором выработки антидиуретического гормона является осмотическое давление внеклеточной жидкости, повышение которого вызывает раздражение осморецепторов и выделение антидиуретического гормона в кровь, канальцевая реабсорбция воды возрастает и осмотическое давление выравнивается, а диурез уменьшается. Уменьшение объема циркулирующей крови вызывает раздражение волюм-рецепторов, расположенных у места впадения легочных вен в левое предсердие, что также увеличивает секрецию гормона и приводит к уменьшению диуреза. Увеличение объема циркулирующей крови уменьшает секрецию антидиуретического гормона и усиливает диурез.

Почки осуществляют также ангиотоническую функцию (см. Ренин-ангиотензинная система).

Почкам принадлежит исключительная роль в осуществлении нормальной жизнедеятельности организма. Удаляя продукты распада, излишки воды, солей, вредные вещества и некоторые лекарственные препараты, почки выполняют тем самым выделительную функцию.

Кроме экскреторной, почкам присущи и другие, не менее важные функции. Удаляя из организма излишки воды и солей, главным образом хлорид натрия, почки поддерживают тем самым осмотическое давление внутренней среды организма. Таким образом, почки принимают участие в водно-солевом обмене и осморегуляции.

Почки наряду с другими механизмами обеспечивают постоянство реакции (рН) крови за счет изменения интенсивности выделения кислых или щелочных солей фосфорной кислоты при сдвигах рН крови в кислую или щелочную сторону.

Почки участвуют в образовании (синтезе) некоторых веществ, которые они же впоследствии и выводят. Почки осуществляют и секреторную функцию. Они обладают способностью к секреции органических кислот и оснований, ионов К + и Н + . Эта особенность почек секретировать различные вещества играет значительную роль в осуществлении их экскреторной функции. И, наконец, установлена роль почек не только в минеральном, но и в липидном, белковом и углеводном обмене.

Таким образом, почки, регулируя осмотическое давление в организме, постоянство реакции крови, осуществляя синтетическую, секреторную и экскреторную функции, принимают активное участие в поддержании постоянства состава внутренней среды организма (гомеостаза).

Строение почек . Для того чтобы яснее представить работу почек, необходимо познакомиться с их строением, так как функциональная активность органа тесно связана с его структурными особенностями. Почки располагаются по обеим сторонам поясничного отдела позвоночника. На внутренней их стороне имеется углубление, в котором находятся сосуды и нервы, окруженные соединительной тканью. Почки покрыты соединительнотканной капсулой. Размеры почки взрослого человека около 11·10 -2 × 5·10 -2 м (11×5 см), масса в среднем 0,2-0,25 кг (200-250 г).

На продольном разрезе почки видны два слоя: корковый - темно-красный и мозговой - более светлый (рис. 39).

При микроскопическом исследовании структуры почек млекопитающих видно, что они состоят из большого количества сложных образований - так называемых нефронов. Нефрон является функциональной единицей почки . Количество нефронов варьирует в зависимости от вида животного. У человека общее количество нефронов в почке достигает в среднем 1 млн.

Нефрон представляет собой длинный каналец, начальный отдел которого в виде двухстенной чаши окружает артериальный капиллярный клубочек, а конечный впадает в собирательную трубку.

В нефроне выделяют следующие отделы: 1) мальпигиево тельце состоит из сосудистого клубочка Шумлянского и окружающей его капсулы Боумена (рис. 40); 2) проксимальный сегмент включает проксимальный извитой и прямой канальцы; 3) тонкий сегмент состоит из тонких восходящего и нисходящего колен петли Генле; 4) дистальный сегмент слагается из толстого восходящего колена петли Генле, дистального извитого и связующего канальцев. Выводной проток последнего впадает в собирательную трубку.

Различные сегменты нефрона располагаются в определенных зонах почки. В корковом слое находятся сосудистые клубочки, элементы проксимального и дистального сегментов мочевых канальцев. В мозговом веществе располагаются элементы тонкого сегмента канальцев, толстые восходящие колена петель Генле и собирательные трубки (рис. 41).

Собирательные трубки, сливаясь, образуют общие выводные протоки, которые проходят через мозговой слой почки к верхушкам сосочков, выступающим в полость почечной лоханки. Почечные лоханки открываются в мочеточники, которые в свою очередь впадают в мочевой пузырь.

Кровоснабжение почек . Почки получают кровь из почечной артерии, которая является одной из крупных ветвей аорты. Артерия в почке делится на большое количество мелких сосудов - артериол, приносящих кровь к клубочку (приносящая артериол а), которые затем распадаются на капилляры (первая сеть капилляров). Капилляры сосудистого клубочка, сливаясь, образуют выносящую артериолу, диаметр которой в 2 раза меньше диаметра приносящей. Выносящая артериола вновь распадается на сеть капилляров, оплетающих канальцы (вторая сеть капилляров).

Таким образом, для почек характерно наличие двух сетей капилляров: 1) капилляры сосудистого клубочка; 2) капилляры, оплетающие почечные канальцы.

Артериальные капилляры переходят в венозные, которые в дальнейшем, сливаясь в вены, отдают кровь в нижнюю полую вену.

Давление крови в капиллярах сосудистого клубочка выше, чем во всех капиллярах тела. Оно равняется 9,332-11,299 кПа (70-90 мм рт. ст.), что составляет 60-70% от величины давления в аорте. В капиллярах, оплетающих канальцы почки, давление невелико - 2,67-5,33 кПа (20-40 мм рт. ст.).

Через почки вся кровь (5-6 л) проходит за 5 мин. В течение суток через почки протекает около 1000-1500 л крови. Такой обильный кровоток позволяет полностью удалять все образующиеся ненужные и даже вредные для организма вещества.

Лимфатические сосуды почек сопровождают кровеносные сосуды, образуя у ворот почки сплетение, окружающее почечную артерию и вену.

Иннервация почек . По богатству иннервации почки занимают второе место после надпочечников. Эфферентная иннервация осуществляется преимущественно за счет симпатических нервов.

Парасимпатическая иннервация почек выражена незначительно. В почках обнаружен рецепторный аппарат, от которого отходят афферентные (чувствительные) волокна, идущие главным образом в составе чревных нервов.

Большое количество рецепторов и нервных волокон обнаружено в капсуле, окружающей почки. Возбуждение указанных рецепторов может вызвать болевые ощущения.

В последнее время изучение иннервации почек привлекает особое внимание в связи с проблемой их пересадки.

Юкстагломерулярный аппарат . Юкстагломерулярный, или околоклубочковый, аппарат (ЮГА) состоит из двух основных элементов: миоэпителиальных клеток, располагающихся главным образом в виде манжетки вокруг приносящей артериолы клубочка, и клеток так называемого плотного пятна (macula densa) дистального извитого канальца.

ЮГА участвует в регуляции водно-солевого гомеостаза и поддержании постоянства артериального давления. Клетки ЮГА секретируют биологически активное вещество - ренин. Секреция ренина находится в обратной зависимости от количества крови, притекающей по приносящей артериоле, и от количества натрия в первичной моче. При уменьшении количества притекающей к почкам крови и снижении в ней количества солей натрия выделение ренина и его активность возрастают.

В крови ренин взаимодействует с белком плазмы - гипертензиногеном. Под влиянием ренина этот белок переходит в активную форму - гипертензин (ангиотонин). Ангиотонин оказывает сосудосуживающее действие, благодаря этому он является регулятором почечного и общего кровообращения. Кроме того, ангиотонин стимулирует секрецию гормона коркового слоя надпочечников - альдостерона, участвующего в регуляции водно-солевого обмена.

В здоровом организме образуются лишь небольшие количества гипертензина. Он разрушается специальным ферментом (гипертензиназа). При некоторых заболеваниях почек увеличивается секреция ренина, что может привести к стойкому повышению артериального давления и нарушению водно-солевого обмена в организме.

Механизмы мочеобразования

Моча образуется из плазмы крови, протекающей через почки, и является сложным продуктом деятельности нефронов.

В настоящее время мочеобразование рассматривают как сложный процесс, состоящий из двух этапов: фильтрации (ультрафильтрация) и реабсорбции (обратное всасывание).

Клубочковая ультрафильтрация . В капиллярах мальпигиевых клубочков происходит фильтрация из плазмы крови воды со всеми растворенными в ней неорганическими и органическими веществами, имеющими низкую молекулярную массу. Эта жидкость поступает в капсулу клубочка (капсула Боумена), а оттуда в канальцы почек. По химическому составу она сходна с плазмой крови, но почти не содержит белков. Образующийся клубочковый фильтрат получил название первичной мочи .

В 1924 г американским ученым Ричардсом в опытах на животных было получено прямое доказательство клубочковой фильтрации. Он использовал в своей работе микрофизиологические методы исследования. У лягушек, морских свинок и крыс Ричарде обнажал почку и пол микроскопом в одну из капсул Боумена вводил тончайшую микропипетку, при помощи которой собирал образующийся фильтрат. Анализ состава этой жидкости показал, что содержание неорганических и органических веществ (за исключением белка) в плазме крови и первичной моче совершенно одинаково.

Процессу фильтрации способствует высокое давление крови (гидростатическое) в капиллярах клубочков - 9,33-12,0 кПа (70-90 мм рт. ст.).

Более высокое гидростатическое давление в капиллярах клубочков по сравнению с давлением в капиллярах других областей организма связано с тем, что почечная артерия отходит от аорты, а приносящая артериола клубочка шире выносящей. Однако плазма в капиллярах клубочков фильтруется не под всем этим давлением. Белки крови удерживают воду и тем самым препятствуют фильтрации мочи. Давление, создаваемое белками плазмы (онкотическое давление), равно 3,33-4,00 кПа (25-30 мм рт. ст.). Кроме того, сила фильтрации уменьшается также на величину давления жидкости, находящейся в полости капсулы Боумена, составляющего 1,33-2,00 кПа (10-15 мм рт. ст.).

Таким образом, давление, под влиянием которого осуществляется фильтрация первичной мочи, равно разности между давлением крови в капиллярах клубочков, с одной стороны, и суммой давления белков плазмы крови и давления жидкости, находящейся в полости капсулы Боумена, - с другой. Следовательно, величина фильтрационного давления равна 9,33-(3,33+2,00)=4,0 кПа . Фильтрация мочи прекращается, если артериальное давление крови ниже 4,0 кПа (30 мм рт. ст.) (критическая величина).

Изменение просвета приносящего и выносящего сосудов обусловливает или увеличение фильтрации (сужение выносящего сосуда), или ее снижение (сужение приносящего сосуда). На величину фильтрации влияет также изменение проницаемости мембраны, через которую происходит фильтрация. Мембрана включает эндотелий капилляров клубочка, основную (базальную) мембрану и клетки внутреннего слоя капсулы Боумена.

Канальцевая реабсорбция . В почечных канальцах происходит обратное всасывание (реабсорбция) из первичной мочи в кровь воды, глюкозы/части солей и небольшого количества мочевины. В результате этого процесса образуется конечная, или вторичная, моча , которая по своему составу резко отличается от первичной. В ней нет глюкозы, аминокислот, некоторых солей и резко повышена концентрация мочевины (табл. 11).

За сутки в почках образуется 150-180 л первичной мочи. Благодаря обратному всасыванию в канальцах воды и многих растворенных в ней веществ за сутки почками выделяется всего 1-1,5 л конечной мочи.

Обратное всасывание может происходить активно или пассивно. Активная реабсорбция осуществляется благодаря деятельности эпителия почечных канальцев при участии специальных ферментных систем с затратой энергии. Активно реабсорбируются глюкоза, аминокислоты, фосфаты, соли натрия. Эти вещества полностью всасываются в канальцах и в конечной моче отсутствуют. За счет активной реабсорбции возможно и обратное всасывание веществ из мочи в кровь даже в том случае, когда их концентрация в крови равна концентрации в жидкости канальцев или выше.

Пассивная реабсорбция происходит без затраты энергии за счет диффузии и осмоса. Большая роль в этом процессе принадлежит разнице онкотического и гидростатического давления в капиллярах канальцев. За счет пассивной реабсорбции осуществляется обратное всасывание воды, хлоридов, мочевины. Удаляемые вещества проходят через стенку канальцев только тогда, когда концентрация их в просвете достигает определенной пороговой величины. Пассивной реабсорбции подвергаются вещества, подлежащие выведению из организма. Они всегда встречаются в составе мочи. Наиболее важным веществом этой группы является конечный продукт азотистого обмена - мочевина, которая реабсорбируется в незначительном количестве.

Обратное всасывание веществ из мочи в кровь в различных частях нефрона неодинаково. Так, в проксимальном отделе канальца всасываются глюкоза, частично ионы натрия и калия, в дистальном - хлорид натрия, калий и другие вещества. На протяжении всего канальца всасывается вода, причем в дистальной его части в 2 раза больше, чем в проксимальной. Особое место в механизме реабсорбции воды и ионов натрия занимает петля Генле за счет так называемой поворотно-противоточной системы . Рассмотрим ее сущность. Петля Генле имеет два колена: нисходящее и восходящее. Эпителий нисходящего отдела пропускает воду, а эпителий восходящего колена не проницаем для воды, но способен активно всасывать ионы натрия и переводить их в тканевую жидкость, а через нее обратно в кровь (рис. 42).

Проходя через нисходящий отдел петли Генле, моча отдает воду, сгущается, становится более концентрированной. Отдача воды происходит пассивно за счет того, что одновременно в восходящем отделе осуществляется активная реабсорбция ионов натрия. Поступая в тканевую жидкость, ионы натрия повышают в ней осмотическое давление и тем самым способствуют притягиванию в тканевую жидкость воды из нисходящего колена. В свою очередь повышение концентрации мочи в петли Генле за счет обратного всасывания воды облегчает переход ионов натрия из мочи в тканевую жидкость. Таким образом, в петле Генле происходит обратное всасывание больших количеств воды и ионов натрия.

В дистальных извитых канальцах осуществляется дальнейшее всасывание ионов натрия, калия, воды и других веществ. В отличие от проксимальных извитых канальцев и петли Генле, где реабсорбция ионов натрия и калия не зависит от их концентрации (обязательная реабсорбция ), величина обратного всасывания указанных ионов в дистальных канальцах изменчива и зависит от их уровня в крови (факультативная реабсорбция ). Следовательно, дистальные отделы извитых канальцев регулируют и поддерживают постоянство концентрации ионов натрия и калия в организме.

Кроме реабсорбции, в канальцах осуществляется процесс секреции . При участии специальных ферментных систем происходит активный транспорт некоторых веществ из крови в просвет канальцев. Из продуктов белкового обмена активной секреции подвергается креатинин, парааминогиппуровая кислота. В полную силу этот процесс проявляется при введении в организм чужеродных ему веществ.

Таким образом, в почечных канальцах, особенно в их проксимальных сегментах, функционируют системы активного транспорта. В зависимости от состояния организма эти системы могут менять направление активного переноса веществ, т. е. обеспечивают или их секрецию (выделение), или обратное всасывание.

Кроме осуществления фильтрации, реабсорбции и секреции, клетки почечных канальцев способны синтезировать некоторые вещества из различных органических и неорганических продуктов. Так, в клетках почечных канальцев синтезируются гиппуровая кислота (из бензойной кислоты и гликокола), аммиак (путем дезаминирования некоторых аминокислот). Синтетическая активность канальцев осуществляется также при участии ферментных систем.

Функция собирательных трубок . В собирательных трубках происходит дальнейшее всасывание воды. Этому способствует то, что собирательные трубки проходят через мозговой слой почки, в котором тканевая жидкость имеет высокое осмотическое давление и поэтому притягивает к себе воду.

Таким образом, мочеобразование - сложный процесс, в котором наряду с явлениями фильтрации и реабсорбции большую роль играют процессы активной секреции и синтеза. Если процесс фильтрации протекает в основном за счет энергии кровяного давления, т. е. в конечном итоге за счет функционирования сердечно-сосудистой системы, то процессы реабсорбции, секреции и синтеза являются результатом активной деятельности клеток канальцев и требуют затраты энергии. С этим связана большая потребность почек в кислороде. Они используют кислорода в 6-7 раз больше, чем мышцы (на единицу массы).

Регуляция деятельности почек

Регуляция деятельности почек осуществляется нейрогуморальными механизмами.

Нервная регуляция . В настоящее время установлено, что вегетативная нервная система регулирует не только процессы клубочковой фильтрации (за счет изменения просвета сосудов), но и канальцевой реабсорбции.

Симпатические нервы, иннервирующие почки, в основном сосудосуживающие. При их раздражении уменьшается выделение воды и увеличивается выведение натрия с мочой. Это обусловлено тем, что количество притекающей к почкам крови уменьшается, давление в клубочках падает, а, следовательно, снижается и фильтрация первичной мочи. Перерезка чревного нерва приводит к увеличению отделения мочи денервированной почкой.

Парасимпатические (блуждающие) нервы действуют на почки двумя путями: 1) косвенно, изменяя деятельность сердца, вызывают уменьшение силы и частоты сердечных сокращений, вследствие этого понижается величина артериального давления и изменяется интенсивность диуреза; 2) регулируя просвет сосудов почек.

При болевых раздражениях рефлекторно уменьшается диурез вплоть до полного его прекращения (болевая анурия). Это связано с тем, что происходит сужение почечных сосудов вследствие возбуждения симпатической нервной системы и увеличения секреции гормона гипофиза - вазопрессина.

Нервная система оказывает трофическое влияние на почки. Односторонняя денервация почки не сопровождается значительными затруднениями в ее работе. Двусторонняя перерезка нервов вызывает нарушение обменных процессов в почках и резкое снижение их функциональной активности. Денервированная почка не может быстро и тонко перестраивать свою деятельность и приспосабливаться к изменениям уровня водно-солевой нагрузки. После введения в желудок животного 1 л воды увеличение диуреза в денервированной почке наступает позже, чем в здоровой.

В лаборатории К. М. Быкова путем выработки условных рефлексов было показано выраженное влияние высших отделов центральной нервной системы на работу почек. Установлено, что кора головного мозга вызывает изменения в работе почек или непосредственно через вегетативные нервы, или через гипофиз, изменяя выделение в кровоток вазопрессина.

Гуморальная регуляция осуществляется главным образом за счет гормонов - вазопрессина (антидиуретический гормон) и альдостерона.

Гормон задней доли гипофиза вазопрессин увеличивает проницаемость стенки дистальных извитых канальцев и собирательных трубок для воды и тем самым способствует ее реабсорбции, что приводит к уменьшению мочеотделения и повышению осмотической концентрации мочи. При избытке вазопрессина может наступить полное прекращение мочеобразования (анурия). Недостаток этого гормона в крови приводит к развитию тяжелого заболевания - несахарного мочеизнурения. При этом заболевании выделяется большое количество светлой мочи с небольшой относительной плотностью, в которой отсутствует сахар.

Альдостерон (гормон коркового вещества надпочечников) способствует реабсорбции ионов натрия и выведению ионов калия в дистальных отделах канальцев и тормозит обратное всасывание кальция и магния в их проксимальных отделах.

Количество, состав и свойства мочи

За сутки человек выделяет в среднем около 1,5 л мочи, однако это количество непостоянно. Так, например, диурез возрастает после обильного питья, потребления белка, продукты распада которого стимулируют мочеобразование. Наоборот, мочеобразование снижается при потреблении небольшого количества воды, белка, при усиленном потоотделении, когда значительное количество жидкости выделяется с потом.

Интенсивность мочеобразования колеблется в течение суток. Днем мочи образуется больше, чем ночью. Уменьшение мочеобразования ночью связано с понижением деятельности организма во время сна, с некоторым падением величины артериального давления. Ночная моча темнее и более концентрированная.

Физическая нагрузка оказывает выраженное влияние на образование мочи. При длительной работе происходит снижение выделения мочи из организма. Это объясняется тем, что при повышенной физической активности кровь в большем количестве притекает к работающим мышцам, вследствие чего уменьшается кровоснабжение почек и снижается фильтрация мочи. Одновременно физическая нагрузка обычно сопровождается усиленным потоотделением, что также способствует уменьшению диуреза.

Цвет мочи . Моча - прозрачная жидкость светло-желтого цвета. При отстаивании в моче выпадает осадок, который состоит из солей и слизи.

Реакция мочи . Реакция мочи здорового человека преимущественно слабокислая, рН ее колеблется от 4,5 до 8,0. Реакция мочи может изменяться в зависимости от питания. При употреблении смешанной пищи (животного и растительного происхождения) моча человека имеет слабокислую реакцию. При питании преимущественно мясной пищей и другими продуктами, богатыми белками, реакция мочи становится кислой; растительная пища способствует переходу реакции мочи в нейтральную или даже щелочную.

Относительная плотность мочи . Плотность мочи равна в среднем 1,015-1,020 и зависит от количества принятой жидкости.

Состав мочи . Почки являются основным органом выведения из организма азотистых продуктов распада белка - мочевины, мочевой кислоты, аммиака, пуриновых оснований, креатинина, индикана.

Мочевина является главным продуктом белкового распада. До 90% всего азота мочи приходится на долю мочевины. В нормальной моче белок отсутствует или определяются только его следы (не более 0,03%о). Появление белка в моче (протеинурия) свидетельствует обычно о заболеваниях почек. Однако в некоторых случаях, а именно во время напряженной мышечной работы (бег на длинные дистанции), белок может появиться в моче здорового человека вследствие временного увеличения проницаемости мембраны сосудистого клубочка почек.

Среди органических соединений небелкового происхождения в моче встречаются: соли щавелевой кислоты, поступающие в организм с пищей, особенно растительной; молочная кислота, выделяющаяся после мышечной деятельности; кетоновые тела, образующиеся при превращении в организме жиров в сахар.

Глюкоза появляется в моче лишь в тех случаях, когда ее содержание в крови резко увеличено (гипергликемия). Выведение сахара с мочой называют глюкозурией.

Появление эритроцитов в моче (гематурия) наблюдается при заболеваниях почек и мочевыводящих органов.

В моче здорового человека и животных содержатся пигменты (уробилин, урохром), от которых зависит ее желтый цвет. Эти пигменты образуются из билирубина желчи в кишечнике, почках и выделяются ими.

С мочой выводится большое количество неорганических солей - около 15·10 -3 -25·10 -3 кг (15-25 г) в сутки. Из организма экскретируется хлорид натрия, хлорид калия, сульфаты и фосфаты. От них также зависит кислая реакция мочи (табл. 12).

Выведение мочи . Конечная моча поступает из канальцев в лоханку и из нее в мочеточник. Передвижение мочи по мочеточникам в мочевой пузырь осуществляется под влиянием силы тяжести, а также за счет перистальтических движений мочеточников. Мочеточники, косо входя в мочевой пузырь, образуют у его основания своеобразный клапан, препятствующий обратному поступлению мочи из мочевого пузыря.

Моча скапливается в мочевом пузыре и периодически выводится из организма за счет акта мочеиспускания.

В мочевом пузыре имеются так называемые сфинктеры, или жомы (кольцеобразные мышечные пучки). Они плотно закрывают выход из мочевого пузыря. Первый из сфинктеров - сфинктер мочевого пузыря - находится у его выхода. Второй сфинктер - сфинктер мочеиспускательного канала - расположен несколько ниже первого и закрывает мочеиспускательный канал.

Мочевой пузырь иннервируется парасимпатическими (тазовыми) и симпатическими нервными волокнами. Возбуждение симпатических нервных волокон приводит к усилению перистальтики мочеточников, расслаблению мышечной стенки мочевого пузыря (детрузора) и повышению тонуса его сфинктеров. Таким образом, возбуждение симпатических нервов способствует накоплению мочи в пузыре. При возбуждении парасимпатических волокон стенка мочевого пузыря сокращается, сфинктеры расслабляются и моча изгоняется из пузыря.

Моча непрерывно поступает в мочевой пузырь, что ведет к повышению давления в нем. Увеличение давления в мочевом пузыре до 1,177-1,471 Па (12-15 см вод. ст.) вызывает потребность в мочеиспускании. После акта мочеиспускания давление в пузыре снижается почти до 0.

Мочеиспускание - сложный рефлекторный акт, заключающийся в одновременном сокращении стенки мочевого пузыря и расслаблении его сфинктеров. В результате этого моча изгоняется из пузыря.

Повышение давления в мочевом пузыре приводит к возникновению нервных импульсов в механорицепторах этого органа. Афферентные импульсы поступают в спинной мозг к центру мочеиспускания (II-IV сегменты крестцового отдела). От центра по эфферентным парасимпатическим (тазовым) нервам импульсы идут к детрузору и сфинктеру мочевого пузыря. Происходит рефлекторное сокращение его мышечной стенки и расслабление сфинктера. Одновременно от центра мочеиспускания возбуждение передается в кору головного мозга, где возникает ощущение позыва к мочеиспусканию. Импульсы от коры головного мозга через спинной мозг поступают к сфинктеру мочеиспускательного канала. Наступает акт мочеиспускания. Корковый контроль проявляется в задержке, усилении или даже произвольном вызывании мочеиспускания. У детей раннего возраста корковый контроль задержки мочеиспускания отсутствует. Он вырабатывается постепенно с возрастом.