Главная · Сон · Молекулярные основы создания новых лекарственных средств. Основные этапы создания лекарственных препаратов затраты на. Исследования в лаборатории фармакокинетики лекарственных форм

Молекулярные основы создания новых лекарственных средств. Основные этапы создания лекарственных препаратов затраты на. Исследования в лаборатории фармакокинетики лекарственных форм

Основными задачами фармакологии является поиск и изучение механизмов действия новых ЛС для последующего их внедрения в широкую медицинскую практику. Процесс создания ЛС достаточно сложен и включает в себя несколько взаимосвязанных этапов. Необходимо подчеркнуть, что в создании и изучении лекарственных средств, помимо фармакологов, непосредственное участие принимают химики-синтетики, биохимики, биофизики, морфологи, иммунологи, генетики, токсикологи, инженеры-технологи, фармацевты, клинические фармакологи. В случае необходимости к их созданию привлекаются и другие специалисты. На первом этапе создания лекарственных средств к работе приступают химики-синтетики, которые синтезируют новые химические соединения, обладающие потенциальной биологической активностью. Обычно химики-синтетики осуществляют целенаправленный синтез соединений или модифицируют химическую структуру уже известных эндогенных (вырабатываемых в организме) биологически активных веществ или ЛС. Целенаправленный синтез лекарственных веществ подразумевает создание биологически активных веществ с заранее заданными фармакологическими свойствами. Как правило, такой синтез проводят в ряду химических соединений, в котором ранее были выявлены вещества, обладающие специфической активностью. Например, известно, что алифатические производные фенотиазина (промазин, хлорпромазин и др.) относятся к группе ЛС, эффективных в лечении психозов. Синтез близких им по химической структуре алифатических производных фенотиазина позволяет предположить наличие у вновь синтезированных соединений антипсихотической активности. Таким образом, были синтезированы, а затем внедрены в широкую медицинскую практику такие антипсихотические ЛС, как алимемазин, левомепромазин и др. В ряде случаев химики-синтетики модифицируют химическую структуру уже известных лекарственных средств. Например, в 70-х гг. XX в. в России было синтезировано и внедрено в широкую медицинскую практику антиаритмическое ЛС морацизин, которое, по мнению ведущего кардиолога США Б.Лауна (B.Lown), было признано самым перспективным антиаритмическим ЛС того времени. Замена в молекуле морацизина морфолиновой группы на диэтиламин позволила создать новый, оригинальный, высокоэффективный антиаритмический препарат этацизин. Создавать новые высокоэффективные ЛС можно и путем синтеза экзогенных аналогов (полученных искусственно) эндогенных (существующих в организме) биологически активных веществ. Например, хорошо известно, что важную роль в переносе энергии в клетке играет макроэргическое соединение креатинфосфат. В настоящее время в клиническую практику внедрен синтетический аналог креатинфосфата - препарат неотон, который с успехом применяют для лечения нестабильной стенокардии, острого инфаркта миокарда и т.д. В некоторых случаях синтезируют не полный структурный аналог эндогенного биологического вещества, а близкое к нему по структуре химическое соединение. При этом иногда молекулу синтезируемого аналога модифицируют таким образом, чтобы придать ей какие-либо новые свойства. Например, структурный аналог эндогенного биологически активного вещества норадреналина препарат фенилэфрин обладает аналогичным с ним сосудосуживающим действием, однако в отличие от норадреналина фенилэфрин в организме практически не разрушается ферментом катехол-О-метилтрансферазой, поэтому действует более длительно. Возможен и другой путь направленного синтеза ЛС - изменение их растворимости в жирах или воде, т.е. изменение липофильности или гидрофильности препаратов. Например, хорошо известная ацетилсалициловая кислота не растворима в воде. Присоединение к молекуле ацетилсалициловой кислоты лизина (препарат ацетилсалицилат лизин) делает это соединение легкорастворимым. Всасываясь в кровь, этот препарат гидролизуется до ацетилсалициловой кислоты и лизина. Можно привести много примеров направленного синтеза ЛС. Биологически активные соединения могут быть получены и из микроорганизмов, тканей растений и животных, т.е. биотехнологическим путем. Биотехнология - отрасль биологической науки, в которой для производства материалов, в том числе и ЛС, используют различные биологические процессы. Например, производство природных антибиотиков основано на способности ряда грибков и бактерий продуцировать биологически активные вещества, оказывающие бактериолитическое (вызывающее гибель бактерий) или бактериостатическое (вызывающее потерю способности бактериальных клеток к размножению) действие. Также при помощи биотехнологии возможно выращивание культуры клеток лекарственных растений, которые по биологической активности близки к натуральным растениям. Важная роль в создании новых высокоэффективных лекарственных средств принадлежит такому направлению биотехнологии, как генная инженерия. Недавние открытия в этой области, показавшие, что человеческие гены клонируются (клонирование - процесс искусственного получения клеток с заданными свойствами, например, путем переноса гена человека в бактерии, после чего они начинают продуцировать биологически активные вещества с заданными свойствами), позволили приступить к широкому промышленному производству гормонов, вакцин, интерферонов и других высокоэффективных ЛС с заранее заданными свойствами. Например, пересадка гена человека, ответственного в его организме за выработку инсулина, непатогенному микроорганизму - кишечной палочке (Е. coli ), позволило получать в промышленном масштабе человеческий инсулин. В последнее время появилось еще одно направление создания новых высокоэффективных ЛС, базирующееся на изучении особенностей их метаболизма (превращения) в организме. Например, известно, что в основе паркинсонизма лежит дефицит нейромедиатора дофамина в экстрапирамидной системе мозга. Естественно было бы для лечения паркинсонизма использовать экзогенный дофамин, который бы возместил нехватку эндогенного дофамина. Такие попытки были предприняты, однако выяснилось, что экзогенный дофамин в связи с особенностями химического строения не в состоянии проникнуть через гематоэнцефалический барьер (барьер между кровью и тканью мозга). Позже был синтезирован препарат леводопа, который в отличие от дофамина легко проникает через гематоэнцефалический барьер в ткань мозга, где метаболизируется (декарбоксилируется) и превращается в дофамин. Другим примером таких ЛС могут служить некоторые ингибиторы ангиотензинпревращающего фермента (ингибиторы АПФ) - периндоприл, рамиприл, эналаприл и др. Так, биологически неактивный эналаприл, метаболизируясь (гидролизуясь) в печени, образует биологически высокоактивный метаболит эналаприлат обладающий гипотензивным (понижающим артериальное давление) действием. Такие ЛС получили название пролекарств, или биопрекузоров (метаболических прекузоров). Возможен и другой путь создания ЛС на основе изучения их метаболизма - создание комплексов «вещество носитель - биологически активное вещество». Например, известно, что полусинтетический антибиотик из группы пенициллинов - ампициллин - плохо всасывается в желудочно-кишечном тракте (ЖКТ) - не более 30 -40 % принятого количества препарата. Для повышения всасывания (биодоступности) ампициллина был синтезирован полусинтетический пенициллин III поколения - бикампициллин, не обладающий противомикробным действием, но практически полностью всасывающийся в кишечнике (90 - 99 %). Попав в кровь, бикампициллин в течение 30 - 45 мин метаболизируется (гидролизуется) до ампициллина, который и оказывает выраженное противомикробное действие. Лекарственные средства, относящиеся к биопрекузорам и веществам-носителям, получили общее название - пролекарства. Помимо изучения фармакологически активных химических соединений, полученных путем целенаправленного синтеза или модификации структуры известных ЛС, возможен поиск биологически активных веществ среди различных классов химических соединений или продуктов растительного и животного происхождения, ранее в качестве потенциальных ЛС не изучавшихся. В этом случае при помощи различных тестов среди этих соединений отбирают вещества, обладающие максимальной биологической активностью. Такой эмпирический (от греч. empeiria - опыт) подход получил название скрининга фармакологических ЛС. Скрининг (от англ. screening ) - отбор, отсев, сортировка. В том случае, когда при изучении соединений оценивают весь спектр их фармакологической активности, говорят о полномасштабном скрининге, а в случае поиска веществ с какой-либо определенной фармакологической активностью, например противосудорожной, говорят о направленном скрининге лекарственных веществ. После этого в экспериментах на животных (in vivo ) и/или опытах, проводимых вне организма, например на культуре клеток (in vitro ), переходят к систематическому изучению спектра и особенностей фармакологической активности вновь синтезированных или отобранных эмпирическим путем соединений. При этом изучение биологической активности соединений проводят как на здоровых животных, так и в модельных экспериментах. Например, изучение спектра фармакологической активности веществ, обладающих антиаритмической активностью, проводят на моделях нарушений сердечного ритма, а антигипертензивных (понижающих артериальное давление - АД) соединений - в экспериментах на спонтанно гипертензивных крысах (специально выведенной линии крыс, обладающих врожденной гипертензией - высоким давлением). После выявления у изучаемых соединений высокой специфической активности, не уступающей, как минимум, активности уже известных (эталонных) ЛС, переходят к изучению особенностей их механизма действия, т. е. изучению особенностей влияния этих соединений на те или иные биологические процессы в организме, посредством которых реализуется их специфический фармакологический эффект. Например, в основе местноанестезирующего (обезболивающего) действия местных анестетиков лежит их способность понижать проницаемость мембран нервных волокон для ионов Na + и тем самым блокировать проведение по ним эфферентных импульсов, или влияние b-адреноблокаторов на сердечную мышцу обусловлено их способностью блокировать b 1 -адренорецепторы, расположенные на клеточной мембране клеток миокарда. В этих исследованиях, помимо собственно фармакологов, принимают участие биохимики, морфологи, электрофизиологи и т.д. По завершении фармакологических исследований и после определения механизмов действия изучаемых соединений начинается новый этап - оценка токсичности потенциальных ЛС. Токсичность (от греч. toxikon - яд) - действие ЛС, наносящее вред организму, которое может выражаться в расстройстве физиологических функций и/или нарушении морфологии органов и тканей вплоть до их гибели. Токсичность вновь синтезированных соединений изучают в специальных токсикологических лабораториях, где, помимо собственно токсичности, определяют мутагенность, тератогенность и онкогенность этих соединений. Мутагенность (от лат. mutatio - изменение, греч. genes - порождающий) - вид токсичности, характеризующий способность вещества вызывать изменения генетического спектра клетки, приводящие к передаче по наследству его измененных свойств. Тератогенность (от греч. teras - чудовище, урод, греч. genes - порождающий) - вид токсичности, характеризующий способность вещества оказывать повреждающее действие на плод. Онкогенность (от греч. onkoma - опухоль, греч. genes - порождающий) - вид токсичности, характеризующий способность вещества вызывать раковые заболевания. Параллельно с изучением токсичности вещества инженеры-технологи разрабатывают лекарственную форму изучаемого вещества, определяют способы хранения лекарственной формы и совместно с химиками-синтетиками разрабатывают техническую документацию для промышленного производства субстанции. Субстанция (действующее вещество, активное начало) - компонент лекарственного средства, оказывающий собственно терапевтическое, профилактическое или диагностическое действие. В лекарственную форму (придаваемое ЛС удобное для применения в клинической практике состояние, при котором достигается необходимый эффект) входят еще и вспомогательные вещества (сахар, мел, растворители, стабилизаторы и т.д.), которые самостоятельно фармакологической активностью не обладают. В тех случаях, когда после токсикологических исследований доказана безопасность изучаемого вещества для организма, результаты фармакологических и токсикологических исследований обобщают, составляют временную Фармакопейную статью и материалы подают в ФГУ «Научный центр экспертизы средств медицинского применения» (ФГУ «НЦЭСМП») при Министерстве здравоохранения и социального развития РФ для получения разрешения на проведение I фазы клинических испытаний. Фармакопейная статья - государственный стандарт ЛС, содержащий перечень показателей и методов контроля их качества. ФГУ «НЦЭСМП» - экспертный орган Министерства здравоохранения и социального развития РФ, занимающийся рассмотрением вопросов, связанных с практическим применением отечественных и зарубежных лекарственных, профилактических, диагностических и физиотерапевтических средств, а также вспомогательных веществ. Главным вопросом, который решает ФГУ «НЦЭСМП», является подготовка рекомендаций Министерству здравоохранения и социального развития РФ на разрешение медицинского применения новых ЛС. После поступления документов в ФГУ «НЦЭСМП» все материалы доклинического изучения ЛС детально рассматривает специальный экспертный совет, в который входят ведущие специалисты страны (фармакологи, токсикологи, клинические фармакологи, клиницисты), и в случае положительной оценки представленных материалов принимают решение о проведении I фазы клинических испытаний. В случае получения разрешения ФГУ «НЦЭСМП» испытуемое ЛС передают клиническим фармакологам для проведения I фазы клинических испытаний, которые проводят на ограниченном контингенте больных. В некоторых странах I фазу клинических испытаний проводят на здоровых испытуемых - добровольцах (20 - 80 чел.). В этом случае особое внимание уделяют изучению безопасности и переносимости однократной и многократных доз испытуемого ЛС и особенностей его фармакокинетики. II фазу клинических испытаний нового ЛС проводят на пациентах (200 - 600 чел.), страдающих заболеванием, для лечения которого предполагают использовать изучаемый препарат. Главной целью II фазы клинических испытаний является доказательство клинической эффективности изучаемого ЛС. В том случае, если II фаза клинических испытаний показала эффективность препарата, переходят к III фазе исследований, которую проводят на большем числе (более 2 000) пациентов. Основной задачей III фазы клинических испытаний является определение эффективности и безопасности изучаемого ЛС в условиях, максимально приближенных к тем, в которых его будут использовать в случае получения разрешения на широкое медицинское применение препарата. В случае успешного завершения этого этапа клинических испытаний всю имеющуюся документацию обобщают, делают соответствующее заключение, и материалы передают в Министерство здравоохранения и социального развития РФ для получения окончательного разрешения на широкое клиническое использование препарата. Последний этап (IV фаза) клинических испытаний проводят уже после получения разрешения Министерства здравоохранения и социального развития Российской Федерации на клиническое применение нового ЛС; IV фаза клинических испытаний называется постмаркетинговым исследованием (англ. - postmarketing trials ). Целью IV фазы клинических испытаний является:

  • усовершенствование схем дозирования препарата;
  • сравнительный анализ эффективности лечения изучаемым ЛС и эталонными препаратами, применяемыми для фармакотерапии данной патологии;
  • выявление отличий изучаемого препарата от других ЛС данного класса;
  • выявление особенностей взаимодействия изучаемого ЛС с пищей и/или другими лекарствами;
  • выявление особенностей применения изучаемого ЛС у пациентов различных возрастных групп;
  • выявление отдаленных результатов лечения и т.д.
Протокол выполнения клинических испытаний достаточно сложен. Эффективность ЛС в клинике оценивается, в том числе и в сравнении с плацебо (от лат. placebo - понравлюсь, удовлетворю) - лекарственной формой, содержащей фармакологически индифферентное (неактивное) вещество, по внешнему виду и вкусу имитирующей то или иное ЛС, например таблетку, содержащую смесь сахара и мела. В клинической фармакологии плацебо используют при клинических испытаниях нового ЛС: одной группе пациентов назначают исследуемый препарат, а другой - плацебо и сравнивают эффекты от лечения. При этом все пациенты уверены в том, что они получают новое эффективное ЛС, т.е. плацебо используют для того, чтобы выявить истинную фармакологическую активность препарата, а не психотерапевтический эффект от его назначения. При проведении клинических испытаний используют слепой и двойной слепой методы определения активности ЛС. В первом случае только лечащий врач знает, какому из пациентов назначают испытуемое ЛС, какому - плацебо. При двойном слепом методе ни лечащий врач, ни тем более больной не знают, что он получил: истинное ЛС или плацебо. При двойном слепом методе эффективность препарата оценивают, как правило, клинические фармакологи, проводящие исследование препарата. Значение клинических испытаний новых ЛС крайне важно: только в условиях клиники возможно выявление особенностей влияния ЛС на организм человека, в том числе особенности всасывания, распределения, связывания с белками плазмы крови, метаболизма и выведения. Кроме того, только в условиях клиники возможно выявление ряда побочных эффектов, например, влияние ЛС на психическую сферу, интеллектуальную деятельность и т.д. Процесс создания и изучения новых ЛС достаточно долог. В среднем от момента синтеза до получения разрешения на широкое клиническое использование препарата проходит 8-15 лет, а материальные затраты составляют 500 - 800 млн. долл. США. При этом только затраты труда составляют 140 - 200 человеко-лет. Фактически эти затраты гораздо больше, так как даже по самым оптимистическим подсчетам лишь 5 - 7 % вновь синтезированных соединений благополучно проходят все этапы экспериментального и клинического изучения и получают разрешение на широкое клиническое применение. Однако даже после передачи препарата в клиническую практику интерес фармакологов и фармацевтов к нему не ослабевает, поскольку создаются новые, более удобные для применения лекарственные формы, уточняются и оптимизируются, а в некоторых случаях и пересматриваются показания к его применению, разрабатываются новые схемы лечения, определяются особенности его взаимодействия с другими ЛС, создаются комбинированные ЛС и т.д. Например, ацетилсалициловая кислота была внедрена в клиническую практику в 1899 г. как противовоспалительное, жаропонижающее и ненаркотическое обезболивающее средство. По этим показаниям ее использовали более 60 лет. Однако в 1970-е гг. была выявлена способность ацетилсалициловой кислоты подавлять синтез тромбоксана и тем самым понижать агрегационную способность тромбоцитов, т.е. у препарата было выявлено мощное антиагрегационное действие (способность ЛС препятствовать склеиванию, слипанию тромбоцитов в просвете сосудов; отсюда - название этой группы ЛС - «антиагреганты»). В настоящее время ацетилсалициловую кислоту широко применяют в клинической практике для профилактики тромбообразования при различных заболеваниях сердечно-сосудистой системы. Более того, согласно данным некоторых ученых систематический прием ацетилсалициловой кислоты более чем на 50 % понижает риск развития повторного инфаркта миокарда и/или инсульта. Постепенно совершенствовались и лекарственные формы ацетилсалициловой кислоты. В настоящее время создано большое количество водорастворимых лекарственных форм ацетилсалициловой кислоты - ацилпирин растворимый, упсарин, аспирин УПСА и др. Известно, что основным побочным действием ацетилсалициловой кислоты, особенно при длительном применении, является повреждение слизистой оболочки желудка и кишечника, в результате чего развиваются эрозии, изъязвления слизистой оболочки и резко возрастает риск развития желудочно-кишечных кровотечений, а у пациентов, страдающих язвенной болезнью желудка, возможно прободение язвы. Для профилактики этих осложнений разработаны и внедрены в широкую клиническую практику специальные лекарственные формы ацетилсалициловой кислоты, покрытые кишечнорастворимой оболочкой (аспирин кардио, тромбо АСС и др.), использование которых в определенной мере понижает риск развития этих осложнений.

Источниками получения лекарств могут быть:

    Продукты химического синтеза. В настоящее время большинство лекарств получают именно этим путем. Различают несколько путей изыскания лекарств среди продуктов химического синтеза:

    Фармакологический скрининг (англ. to screen – просеивать). Метод поиска веществ с определенным типом фармакологической активности среди множества химических соединений синтезированных химиками по специальному заказу. Впервые фармакологический скрининг применил немецкий ученый Домагк, который работал в химическом концернеIG-FIи проводил поиск антимикробных средств среди соединений, синтезированных для крашения тканей. У одного из этих красителей – красного стрептоцида и было обнаружено противомикробное действие. Так были открыты сульфаниламидные средства. Проведение скрининга – чрезвычайно трудоемкий и затратный процесс: для обнаружения одного лекарственного средства исследователю приходится тестировать несколько сотен или тысяч соединений. Так, Пауль Эрлих, при поиске противосифилитических средств изучил около 1000 органических соединений мышьяка и висмута и только 606-й препарат – сальварсан, оказался достаточно эффективным. В настоящее время, для проведения скрининга необходимо синтезировать не менее 10.000 исходных соединений, чтобы с большей долей уверенности полагать, что среди них имеется одно (!) потенциально эффективное лекарственное средство.

    Молекулярное конструирование лекарств. Создание сканнирующей томографии и рентгенструктурного анализа, развитие компьютерных технологий позволили получать трехмерные изображения активных центров рецепторов и ферментов и подбирать к ним молекулы, конфигурация которых точно соответствует их форме. Молекулярное конструирование не требует синтеза тысяч соединений и их тестирования. Исследователь сразу создает несколько молекул идеально подходящих к биологическому субстрату. Однако, по своей экономической стоимости данный метод не уступает скринингу. Методом молекулярного конструирования были получены ингибиторы нейраминидазы – новая группа противовирусных препаратов.

    Воспроизведение биогенных веществ. Таким образом были получены медиаторные средства – адреналин, норадреналин, простагландины; средства с активностью гормонов гипофиза (окситоцин, вазопрессин), щитовидной железы, надпочечников.

    Целенаправленная модификация молекул с уже известной активностью. Так, например, было установлено, что введение атомов фтора в молекулы лекарств, как правило повышает их активность. Путем фторирования кортизола были созданы мощные глюкокортикоидные препараты, при фторировании хинолонов были получены наиболее активные противомикробные средства – фторхинолоны.

    Синтез фармакологически активных метаболитов. При изучении метаболизма транквилизатора диазепама было установлено, что в печени из него образуется вещество с транквилизирующей активностью – оксазепам. В настоящее время оксазепам синтезируется и выпускается как отдельное лекарственное средство.

    Случайные находки («серендипитный» метод). Метод получил свое название по сказке Горация Уолпола «Три принцессы Серендипи». Эти сестры часто совершали удачные открытия и находили решения проблем сами специально не желая того. Примером «серендипитного» получения лекарства является создание пенициллина, которое произошло во многом благодаря тому, что A.Flemingслучайно обратил внимание на то, что в заплесневелой чашке, забытой в термостате на Рождество, погибли микроорганизмы. Иногда случайные открытия совершаются в результате ошибки. Так например, ошибочно полагая, что противосудорожное действие фенитоина связано с тем, что он является антагонистом фолиевой кислоты, сотрудники концернаGlaxoWellcomeсинтезировали ламотриджин – новое противосудорожное средство. Однако, оказалось что, во-первых, действие фенитоина не связано с фолиевой кислотой, а во-вторых, сам ламотриджин не вмешивается в обмен фолатов.

    Компоненты растительного сырья. Многие растения содержат вещества, обладающие полезными фармакологическими свойствами, причем до настоящего времени продолжается открытие все новых и новых соединений. Широко известными примерами лекарственных средств, полученных из лекарственного растительного сырья являются морфин, выделенный из опийного мака (Papaver somniferum ), атропин, полученный из красавки (Atropa belladonna ).

    Ткани животных. Из тканей животных получают некоторые гормональные препараты – инсулин из тканей поджелудочной железы свиней, эстрогены из мочи жеребцов, ФСГ из мочи женщин.

    Продукты жизнедеятельности микроорганизмов. Ряд антибиотиков, средства для лечения атеросклероза из группы статинов получают из культуральной жидкости различных грибков и бактерий.

    Минеральное сырье. Из попутных продуктов нефтеперегонки получают вазелин, используемый в качестве мазевой основы.

Каждое лекарственное средство до того, как начнет применяться в практической медицине должно пройти определенную процедуру изучения и регистрации, которая гарантировала бы, с одной стороны эффективность лекарства при лечении данной патологии, а с другой стороны – его безопасность. Внедрение лекарственных средств делят на ряд этапов (см. таблицу 1).

На схеме 2 показаны основные этапы движения лекарства в процессе его разработки и изучения. После завершения IIIфазы клинических испытаний документация вновь поступает в Фармакологический комитет (объем полного досье может составлять до 1 млн. страниц) и в течение 1-2 лет регистрируется в Государственном реестре лекарственных средств и изделий медицинского назначения. Только после этого фармакологический концерн имеет право начать промышленный выпуск лекарственного средства и его распространение через аптечную сеть.

Таблица 1. Краткая характеристика основных этапов при разработке новых лекарств.

Этап

Краткая характеристика

Доклинические испытания (4 года)

После завершения материалы передаются для экспертизы в Фармакологический комитет, который санкционирует проведение клинических испытаний.

    Исследование invitroи создание лекарственной субстанции;

    Исследования на животных (не менее чем на 2 видах, один из которых – не грызуны). Программа исследований:

      Фармакологический профиль лекарства (механизм действия, фармакологические эффекты и их селективность);

      Острая и хроническая токсичность лекарства;

      Тератогенное действие (ненаследуемые дефекты в потомстве);

      Мутагенное действие (наследуемые дефекты в потомстве);

      Канцерогенное действие (опухолевая трансформация клетки).

Клинические испытания (8-9 лет)

Включают 3 фазы. Экспертиза документации Фармакологическим комитетом проводится после завершения каждой фазы. Лекарство может быть отозвано на любом этапе.

    ФАЗА I. ЯВЛЯЕТСЯ ЛИ ВЕЩЕСТВО БЕЗОПАСНЫМ? Исследуют фармакокинетику и зависимость эффекта лекарства от его дозы на небольшом числе (20-50 человек) здоровых добровольцев.

    ФАЗА II. ОКАЗЫВАЕТ ЛИ ВЕЩЕСТВО ДЕЙСТВИЕ В ОРГАНИЗМЕ ПАЦИЕНТА? Выполняют на ограниченном числе пациентов (100-300 человек). Определяют переносимость терапевтических доз больным человеком и ожидаемые нежелательные эффекты.

    ФАЗА III. ЯВЛЯЕТСЯ ЛИ ВЕЩЕСТВО ЭФФЕКТИВНЫМ? Выполняют на большом числе пациентов (не менее 1.000-5.000 человек). Определяют степень выраженности эффекта, уточняют нежелательные эффекты.

Схема 2. Основные этапы исследования и внедрения лекарства в медицинскую практику.

Однако, параллельно с продажей лекарства фармацевтический концерн организует IVфазу клинических испытаний (постмаркетинговые исследования). Цель этой фазы – выявить редко встречающиеся, но потенциально опасные нежелательные эффекты лекарства. Участниками этой фазы являются все практикующие врачи, которые назначают лекарство и пациенту, которые его применяют. При обнаружении серьезных недостатков лекарство может быть отозвано концерном. Например, после того как новый фторхинолон третьего поколения грепафлоксацин успешно прошел все этапы испытаний и поступил в продажу фирма-производитель отозвала лекарство менее чем через год. В ходе постмаркетинговых исследований было обнаружено, что грепафлоксацин может быть причиной летальных аритмий.

При организации и проведении клинических испытаний должны выполняться следующие требования:

    Исследование должно быть контролируемым – т.е. параллельно с группой принимающей исследуемое лекарство, должна быть набрана группа, которая получает стандартный препарат сравнения (позитивный контроль) или неактивный препарат, который внешне имитирует изучаемое лекарство (плацебо контроль). Это необходимо для того, чтобы исключить элемент самовнушения при лечении данным лекарством. В зависимости от вида контроля различают:

      Простое слепое исследование: пациент не знает, что он принимает – новое лекарство или контрольный препарат (плацебо).

      Двойное слепое исследование: и пациент, и врач, который выдает препараты и оценивает их эффект не знают, что получает пациент – новое лекарство или контрольный препарат. Информацией об этом обладает только руководитель исследования.

      Тройное слепое исследование: ни пациент, ни врач и руководитель исследования не знают, какая группа получает лечение новым лекарство, а какая контрольными средствами. Информация об этом находится у независимого наблюдателя.

    Исследование должно быть рандомизированным – т.е. однородная группа пациентов должна быть случайным образом разделена на экспериментальную и контрольную группу.

    Исследование должно быть организовано с соблюдением всех этических норм и принципов, которые изложены в Хельсинской декларации.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

КУРСОВАЯ РАБОТА

на тему: «Создание лекарственных препаратов»

Введение

1. Немного истории

2. Источники получения фармацевтических препаратов

3. Создание лекарственных препаратов

4. Классификация лекарственных веществ

5. Характеристика лекарственных веществ

Заключение

Список литературы

Введение

Химия с давних времен вторглась в жизнь человека и продолжает оказывать ему разностороннюю помощь и сейчас. Особенно важна органическая химия, рассматривающая органические соединения - предельные, непредельные циклические, ароматические и гетероциклические. Так, на основе непредельных соединений получают важные виды пластмасс, химические волокна, синтетические каучуки, соединения с небольшим молекулярным весом - этиловый спирт, уксусную кислоту, глицерин, ацетон и другие, многие из которых находят применение в медицине.

В наши дни химики синтезируют большое количество лекарственных препаратов. По данным международной статистики, химики должны синтезировать и подвергнуть тщательным испытаниям от 5 до 10 тысяч химических соединений, чтобы отобрать один лекарственный препарат, эффективный против той или иной болезни.

Еще М. В. Ломоносов говорил, что “медик без довольного познания химии совершенным быть не может”. О значении химии для медицины он писал: «От одной химии уповать можно на исправление недостатков врачебной науки”.

Лекарственные вещества известны с очень древних времен. Например, в Древней Руси мужской папоротник, мак и другие растения употреблялись как лекарства. И до сих пор в качестве лекарственных средств используются 25-30% различных отваров, настоек и экстрактов растительных и животных организмов.

В последнее время биология, медицинская наука и практика все чаще используют достижения современной химии. Огромное количество лекарственных соединений поставляют химики, и за последние годы в области химии лекарств достигнуты новые успехи. Медицина обогащается все большим количеством новых лекарственных препаратов, вводятся более совершенные методы их анализа, позволяющие достаточно точно определить качество (подлинность) лекарств, содержание в них допустимых и недопустимых примесей.

В каждой стране существует законодательство о фармацевтических препаратах, изданное отдельной книгой, которая называется фармакопеей. Фармакопея является сборником общегосударственных стандартов и положений, нормирующих качество лекарственных средств. Изложенные в фармакопее стандарты и обязательные нормы для медикаментов, сырья и препаратов применяются при изготовлении лекарственных форм и являются обязательным для провизора, врача, организаций, учреждений, изготовляющих и применяющих лекарственные средства. По фармакопее лекарственные препараты анализируются для проверки их качества.

лекарство фармацевтический препарат

1. Немного истории

Фармацевтическая промышленность является сравнительно молодой отраслью производства. Еще в середине 19 столетия производство лекарственных средств в мире было сосредоточено в разобщенных аптеках, в которых провизоры изготовляли препараты по только им известным рецептам, передававшимся по наследству. Большую роль в то время играли средства неродной медицины.

Фармацевтическое производство развивалось неравномерно и зависело от ряда обстоятельств. Так, работы Луи Пастера в 60-х годах 19 века послужили основой для производства вакцин, сывороток. Освоение промышленного синтеза красителей в Германии в последней четверти 19 века привело к производству лекарств фенацетина и антипирина.

В 1904 г. немецкий врач Пауль Эрлих заметил, что при введении некоторых красителей в ткани подопытных животных эти красители лучше окрашивают клетки бактерий, чем клетки животного, в которых эти бактерии живут. Напрашивался вывод: можно найти такое вещество, которое настолько “закрасит” бактерию, что она погибнет, но в то же время не тронет ткани человека. И Эрлих нашел краситель, который внедрялся в трипаносомы, вызывающие у человека сонную болезнь. Вместе с тем для мышей. на которых проводился опыт, краситель был безвреден. Эрлих опробовал краситель на зараженных мышах; у них болезнь протекала легче, но все же краситель был слабым ядом для трипаносом. Тогда Эрлих ввел в молекулу красителя атомы мышьяка - сильнейшего яда. Он надеялся, что краситель “утащит” весь мышьяк в клетки трипаносом, а мышам его достанется совсем не много. Так и случилось. К 1909 г. Эрлих доработал свое лекарство, синтезировав вещество, избирательно поражавшее трипаносомы, но малотоксичное для теплокровных животных - 3,3"-диамино-4.4"-дигидроксиарсенобензол. В его молекуле два атома мышьяка. Так начиналась химия синтетических лекарственных препаратов.

До 30-х годов 20 века в фармацевтической химии основное место занимали лекарственные растения (травы). В середине 30-х годов 20 века фармацевтическая промышленность стала на путь целенаправленного органического синтеза, чему способствовало обнаруженное немецким биологом Г. Домагком (19340) антибактериальное свойство красителя - пронтозила, синтезированного в 1932 г. Начиная с 1936 г. на основе этого соединения широко развернулись поиски так называемых сульфаниламидных анти кокковых препаратов.

2. Источники получения фармацевтических препаратов

Все лекарственные вещества могут быть разделены на две большие группы: неорганические и органические. Те и другие получаются из природного сырья и синтетически.

Сырьем для получения неорганических препаратов являются горные породы, руды, газы, вода озер и морей, отходы химических производств.

Сырьем для синтеза органических лекарственных препаратов служат природный газ, нефть, каменный уголь, сланцы и древесина. Нефть и газ являются ценным источником сырья для синтеза углеводородов, являющихся полупродуктами при производстве органических веществ и лекарственных препаратов. Полученные из нефти вазелин, вазелиновое масло, парафин применяются в медицинской практике.

3. Создание лекарственных препаратов

Как ни много известно лекарственных препаратов, как ни богат их выбор, предстоит еще немало сделать в этой области. Как же в наше время создаются новые лекарства?

В первую очередь нужно найти биологически активное соединение, оказывающее то или иное благоприятное воздействие на организм. Существуют несколько принципов такого поиска.

Весьма распространен эмпирический подход, не требующий знания ни структуры вещества, ни механизма его воздействия на организм. Тут можно выделить два направления. Первое - это случайные открытия. Например, было случайно открыто слабительное действие фенолфталеина (пургена) а также галлюциногенное действие некоторых наркотических веществ. Другое направление - это так называемый метод “просеивания”, когда сознательно, с целью выявления нового биологически активного препарата проводят испытания многих химических соединений.

Существует и так называемый направленный синтез лекарственных веществ. В этом случае оперируют с уже известным лекарственным веществом и, незначительно модифицируя его, проверяют в опытах с животными, как эта замена влияет на биологическую активность соединения. Порой достаточно минимальных изменений в структуре вещества, чтобы резко усилить или совсем снять его биологическую активность. Пример: в молекуле морфина, который обладает сильным болеутоляющим действием, заменили всего один атом водорода на метильную группу и получили другое лекарство - кодеин. Болеутоляющее действие кодеина в десять раз меньше, чем морфина, но зато он оказался хорошим средством против кашля. Заменили два атома водорода на метил в том же морфине - получили тебаин. Это вещество уже совсем “не работает” как обезболивать и не помогает от кашля, но вызывает судороги.

В очень редких пока еще случаях успешным оказывается поиск лекарственных средств на основе общетеоретических представлений о механизме биохимических процессов в норме и патологии, об аналогии этих процессов с реакциями вне организма и о факторах, влияющих на такие реакции.

Часто за основу лекарственного вещества берут природное соединение и путем небольших изменений в структуре молекулы получают новый препарат. Именно так, химической модификацией природного пенициллина, получены многие его полусинтетические аналоги, например оксацилин.

После того, как биологически активное соединение отобрано, определена его формула и структура, нужно исследовать, не является ли это вещество ядовитым, не оказывает ли на организм побочных воздействий. Это выясняют биологи и медики. А затем снова очередь за химиками - они должны предложить наиболее оптимальный способ, которым это вещество будут получать в промышленности. Иногда синтез нового соединения сопряжен с такими трудностями, и оно обходится так дорого, что применение его в качестве лекарства на данном этапе не возможно.

4. Классификация лекарственных веществ

Лекарственные вещества разделяют по двум классификациям: фармакологическая и химическая.

Первая классификация более удобна для медицинской практики. Согласно этой классификации, лекарственные вещества делятся на группы в зависимости от их действия на системы и органы. Например: снотворные и успокаивающие (седативные); сердечно - сосудистые; анальгезирующие (болеутоляющие), жаропонижающие и противовоспалительные; противомикробные (антибиотики, сульфаниламидные препараты и др.); местно-анестезирующие; антисептические; диуретические; гормоны; витамины и др.

В основу химической классификации положено химическое строение и свойства веществ, причем в каждой химической группе могут быть вещества с различной физиологической активностью. По этой классификации лекарственные вещества подразделяются на неорганические и органические. Неорганические вещества рассматриваются по группам элементов периодической системы Д. И. Менделеева и основным классам неорганических веществ (оксиды, кислоты, основания, соли). Органические соединения делятся на производные алифатического, алициклического, ароматического и гетероциклического рядов. Химическая классификация более удобна для химиков, работающих в области синтеза лекарственных веществ.

5. Харак теристика лекарственных веществ

Местноанестезирующие средства

Большое практическое значение имеют синтетические анестезирующие (обезболивающие) вещества, полученные на основе упрощения структуры кокаина. К ним относятся анестезин, новокаин, дикаин. Кокаин - природный алкалоид, полученный из листьев растения кока, произрастающего в Южной Америке. Кокаин обладает анестезирующим свойством, но вызывает привыкание, что осложняет его использование. В молекуле кокаина анестизиоморфная группировка представляет собой метилалкиламино-пропиловый эфир бензойной кислоты. Позднее было установлено, что лучшим действием обладают эфиры парааминобензойной кислоты. К таким соединениям относятся анестезин и новокаин. Они менее токсичны по сравнению с кокаином и не вызывают побочных явлений. Новокаин в 10 раз менее активен, чем кокаин, но примерно в 10 раз и менее токсичен.

Главенствующее место в арсенале обезболивающих средств веками занимал морфин - основной действующий компонент опия. Содержание морфина в опии составляет в среднем 10%.

Морфин легко растворяется в едких щелочах, хуже - в аммиаке и углекислых щелочах. Вот наиболее общепризнанная формула морфина.

Он использовался еще в те времена, к которым относятся первые дошедшие до нас письменные источники.

Основные недостатки морфина - возникновение болезненного пристрастия к нему и угнетение дыхания. Хорошо известны производные морфина - кодеин и героин.

Снотворные средства

Вещества, вызывающие сон, относятся к разным классам, но наиболее известны производные барбитуровой кислоты (полагают, что ученый, получивший это соединение, назвал его по имени своей приятельницы Барбары). Барбитуровая кислота образуется при взаимодействии мочевины с малоновой кислотой. Ее производные называются барбитуратами, например фенобарбитал (люминал), барбитал (веронал) и др.

Все барбитураты угнетают нервную систему. Амитал обладает широким спектром успокоительного воздействия. У некоторых пациентов этот препарат снимает торможение, связанное с мучительными, глубоко спрятанными воспоминаниями. Некоторое время даже считалось, что его можно использовать как сыворотку правды.

Организм человека привыкает к барбитуратам при частом их употреблении как успокаивающих и снотворных средств, поэтому люди пользующиеся барбитуратами, обнаруживают, что им нужны все большие дозы. Самолечение этими препаратами может принести значительный вред здоровью.

Трагические последствия может иметь сочетание барбитуратов с алкоголем. Совместное их действие на нервную систему гораздо сильнее действия даже более высоких доз в отдельности.

В качестве успокаивающего и снотворного средства широко используется димедрол. Он не является барбитуратом, а относится к простым эфирам. Исходным продуктом получения димедрола в медицинской промышленности является бензальдегид, который по реакции Гриньяра переводят в бензгидрол. При взаимодействии последнего с отдельно получаемым гидрохлоридом диметиламиноэтилхлорида получается димедрол:

Димедрол - активный противогистаминный препарат. Он оказывает местноанестезирующее действие, однако в основном применяется при лечении аллергических заболеваний.

Психотропные средства

Все психотропные вещества по их фармакологическому действию можно разделить на две группы:

1)Транквилизаторы - вещества, обладающие успокаивающими свойствами. В свою очередь транквилизаторы подразделяются на две подгруппы:

Большие транквилизаторы (нейролептические средства). К ним относятся производные фенотиазина. Аминазин применяется как эффективное средство при лечении психических больных, подавляя у них чувство страха, тревоги, рассеянность.

Малые транквилизаторы (атарактические средства). К ним относятся производные пропандиола (мепротан, андаксин), дифенилметана (атаракс, амизил) вещества, имеющие различную химическую природу (диазепам, элениум, феназепам, седуксен и др.). Седуксен и элениум применяются при неврозах, для снятия чувства тревоги. Хотя токсичность их невелика, наблюдаются побочные явления (сонливость, головокружение, привыкание к препаратам). Их не следует применять без назначения врача.

2) Стимуляторы - вещества, обладающие антидепрессивным действием (фторазицин, индопан, трансамин и др.)

Анальгезирующие, жаропонижающие и противовоспалительные средства

Крупная группа лекарственных препаратов - производные салициловой кислоты (орто-гидроксибензойной). Ее можно рассматривать как бензойную кислоту, содержащую в орто-положении гидроксил, либо как фенол, содержащий в орто-положении карбоксильную группу.

Салициловую кислоту получают из фенола, который под действием раствора едкого натра переходит в фенолят натрия. После упаривания раствора в сухой фенолят пропускают углекислый газ под давлением и при нагревании. Сначала образуется фенил-натрий карбонат, в котором при повышении температуры до 135-140 ? происходит внутримолекулярное перемещение и образуется салицилат натрия. Последний разлагают серной кислотой, при этом техническая салициловая кислота выпадает в осадок:

С Салициловая кислота - сильное дезинфицирующее средство. Ее натриевая соль применяется как болеутоляющее, противовоспалительное, жаропонижающее средство и при лечении ревматизма.

Из производных салициловой кислоты наиболее известен ее сложный эфир - ацетилсалициловая кислота, или аспирин. Аспирин - молекула, созданная искусственно, в природе он не встречается.

При введении в организм ацетилсалициловая кислота в желудке не изменяется, а в кишечнике под влиянием щелочной среды распадается, образуя анионы двух кислот - салициловой и уксусной. Анионы попадают в кровь и переносятся ею в различные ткани. Активным началом, обусловливающим физиологическое действие аспирина, является салицилатион.

Ацетилсалициловая кислота обладает противоревматическим, противовоспалительным, жаропонижающим и болеутоляющим действием. Она также выводит из организма мочевую кислоту, а отложение ее солей в тканях (подагра) вызывает сильные боли. При приеме аспирина могут возникнуть желудочно-кишечные кровотечения, а иногда - аллергия.

Лекарственные вещества были получены за счет взаимодействия карбоксильной группы салициловой кислоты с различными реагентами. Например, при действии аммиака на метиловый эфир салициловой кислоты остаток метилового спирта заменяется аминогруппой и образуется амид салициловой кислоты - салициламид. Он используется как противоревматическое, противовоспалительное, жаропонижающее средство. В отличие от ацетилсалициловой кислоты салициламид в организме с большим трудом подвергается гидролизу.

Салол - сложный эфир салициловой кислоты с фенолом (фенилсалицилат) обладает дезинфицирующими, антисептическими свойствами и употребляется при заболеваниях кишечника.

Замена в бензольном кольце салициловой кислоты одного из водородных атомов на аминогруппу приводит к пара-аминосалициловой кислоте (ПАСК), которая используется как противотуберкулезный препарат.

Распространенными жаропонижающими и болеутоляющими средствами являются производные фенилметилпиразолона - амидопирин и анальгин. Анальгин обладает небольшой токсичностью и хорошими терапевтическими свойствами.

Противомикробные средства

В 30-х годах 20 века широко распространились сульфаниламидные препараты (название произошло от амида сульфаниловой кислоты). В первую очередь это пара-аминобензолсульфамид, или просто сульфаниламид (белый стрептоцид). Это довольно простое соединение - производное бензола с двумя заместителями - сульфамидной группой и аминогруппой. Он обладает высокой противомикробной активностью. Было синтезировано около 10 000 различных его структурных модификаций, но лишь около 30 его производных нашли практическое применение в медицине.

Существенный недостаток белого стрептоцида - малая растворимость в воде. Но была получена его натриевая соль - стрептоцид, растворимый в воде и применяющийся для инъекций.

Сульгин - это сульфаниламид, у которого один атом водорода сульфамидной группы замещен на остаток гуанидина. Он применяется для лечения кишечных инфекционных заболеваний (дизентерии).

С появлением антибиотиков бурное развитие химии сульфаниламидов спало, но полностью вытеснить сульфаниламиды антибиотикам не удалось.

Механизм действия сульфаниламидов известен.

Для жизнедеятельности многих микроорганизмов необходима пара-аминобензойная кислота.

Она входит в состав витамина - фолиевой кислоты, которая для бактерий является фактором роста. Без фолиевой кислоты бактерии не могут размножаться. По своей структуре и размерам сульфаниламид близок к пара-аминобензойной кислоте, что позволяет его молекуле занять место последней в фолиевой кислоте. Когда мы вводим в организм, зараженный бактериями, сульфаниламид, бактерии, “не разобравшись”, начинают синтезировать фолиевую кислоту, используя вместо аминобензойной кислоты стрептоцид. В результате синтезируется “ложная” фолиевая кислота, которая не может работать как фактор роста и развитие бактерий приостанавливается. Так сульфаниламиды “обманывают” микробов.

Антибиотики

Обычно антибиотиком называют вещество, синтезируемое одним микроорганизмом и способное препятствовать развитию другого микроорганизма. Слово “антибиотик” состоит из двух слов: от греч. anti - против и греч. bios - жизнь, то есть вещество, действующее против жизни микробов.

В 1929 г. случайность позволила английскому бактериологу Александру Флемингу впервые наблюдать противомикробную активность пенициллина. Культуры стафилококка, которые выращивались на питательной среде, были случайно заражены зеленой плесенью. Флеминг заметил, что стафилококковые палочки, находящиеся по соседству с плесенью, разрушались. Позднее было установлено, что плесень относится к виду Penicillium notatum.

В 1940 году удалось выделить химическое соединение, которое производил грибок. Его назвали пенициллином. Наиболее изученные пенициллины имеют следующее строение:

В 1941 году пенициллин был опробован на человеке как препарат для лечения болезней, вызываемых стафилококками, стрептококками, пневмококками и др. микроорганизмами.

В настоящее время описано около 2000 антибиотиков, но лишь около 3% из них находят практическое применение, остальные оказались токсичными. Антибиотики обладают очень высокой биологической активностью. Они относятся к различным классам соединений с небольшим молекулярным весом.

Антибиотики различаются по своей химической структуре и механизмом действия на вредные микроорганизмы. Например, известно, что пенициллин не дает возможности бактериям производить вещества, из которых они строят свою клеточную стенку.

Нарушение или отсутствие клеточной стенки может привести к разрыву бактериальной клетки и выливанию ее содержимого в окружающее пространство. Это может также позволить антителам проникнуть в бактерию и уничтожить ее. Пенициллин эффективен только против грамположительных бактерий. Стрептомицин эффективен и против грамположительных и грамотрицательных бактерий. Он не позволяет бактериям синтезировать специальные белки, нарушая, таким образом, их жизненный цикл. Стрептомицин вместо РНК вклинивается в рибосому, и все время путает процесс считывания информации с мРНК. Существенным недостатком стрептомицина является чрезвычайно быстрое привыкание к нему бактерий, кроме того, препарат вызывает побочные явления: аллергию, головокружение и т п.

К сожалению, бактерии постепенно приспосабливаются к антибиотикам и поэтому перед микробиологами постоянно стоит задача создания новых антибиотиков.

Алкалоиды

В 1943 году швейцарский химик А. Гофман исследовал различные вещества основного характера, выделяемые из растений - алкалоиды (т. е. подобные щелочам). Однажды химик случайно взял в рот немного раствора диэтиламида лизергиновой кислоты (ЛСД), выделенного из спорыньи, - грибка, растущего на ржи. Через несколько минут у исследователя появились признаки шизофрении - начались галлюцинации, сознание помутилось, речь стала бессвязной. “Я чувствовал, что плыву где-то вне своего тела, описывал впоследствии свое состояние химик. - Поэтому я решил, что умер“. Так Гофман понял, что он открыл сильнейший наркотик, галлюциноген. Оказалось, что достаточно 0,005 мг ЛСД попасть в мозг человека, чтобы вызвать галлюцинации. Многие алкалоиды принадлежат к ядам и наркотикам. С 1806 года был известен морфин, выделяемый из сока головок мака. Это хорошее обезболивающее средство, однако при длительном применении морфина у человека вырабатывается к нему привыкание, организму требуются все большие дозы наркотика. Таким же действием обладает сложный эфир морфина и уксусной кислоты - героин.

Алкалоиды - весьма обширный класс органических соединений, оказывающих самое различное действие на организм человека. Среди них и сильнейшие яды (стрихнин, бруцин, никотин), и полезные лекарства (пилокарпин - средство для лечения глаукомы, атропин - средство для расширения зрачков, хинин - препарат для лечения малярии). К алкалоидам относятся и широко применяемые возбуждающие вещества - кофеин, теобромин, теофиллин. Кофеин содержится в зернах кофе (0,7 - 2,5%) и в чае (1,3 - 3,5%). Он обусловливает тонизирующее действие чая и кофе. Теобромин добывают из шелухи семян какао, в небольшом количестве он сопутствует кофеину в чае, теофиллин содержится в чайных листьях и кофейных зернах.

Интересно, что некоторые алкалоиды являются противоядиями по отношению к своим собратьям. Так, в 1952 г. из одного индийского растения был выделен алкалоид резерпин, который позволяет лечить не только людей, отравившихся ЛСД или другими галлюциногенами, но и больных, страдающих шизофренией.

Заключение

Современное человеческое общество живет и продолжает развиваться, активно используя достижения науки и техники, и практически немыслимо остановиться на этом пути или вернуться назад, отказавшись от использования знаний об окружающем мире, которыми человечество уже обладает.

В настоящее время в мире существует множество научных центров, ведущих разнообразные химико-биологические исследования. Странами-лидерами в этой области являются США, европейские страны: Англия, Франция, Германия, Швеция, Дания, Россия и др. В нашей стране существует множество научных центров, расположенных в Москве и Подмосковье (Пущино, Обнинск), Петербурге, Новосибирске, Красноярске, Владивостоке... Многие исследовательские институты Академии Наук России, Российской Академии Медицинских наук, Министерства Здравоохранения и Медицинской Промышленности продолжают научные изыскания.

Постоянно исследуются механизмы превращений химических веществ в организмах, и на основе полученных знаний ведется непрекращающийся поиск лекарственных веществ. Большое количество разнообразных лекарственных веществ в настоящее время получают либо биотехнологически (интерферон, инсулин, антибиотики, лекарственные вакцины и пр.), используя микроорганизмы (многие из которых являются продуктом генной инженерии), либо путем ставшего почти традиционным химического синтеза, либо с помощью физико-химических методов выделения из природного сырья (частей растений и животных).

Большое количество химических веществ служит для изготовления самых разнообразных протезов. Производятся протезы челюстей, зубов, коленных чашечек, суставов конечностей из разных химических материалов, которые успешно применяются в восстановительной хирургии для замены костей, ребер и пр. Одной из биологических задач химии является поиск новых материалов, способных заменить живую ткань, необходимых при протезировании. Химия подарила врачам сотни разнообразных вариантов новых материалов.

Кроме множества лекарств, в повседневной жизни люди сталкиваются с достижениями физико-химической биологии в различных сферах своей профессиональной деятельности и в быту. Появляются новые продукты питания или совершенствуются технологии сохранения уже известных продуктов. Производятся новые косметические препараты, позволяющие человеку быть здоровым и красивым, защищающие его от неблагоприятного воздействия окружающей среды. В технике находят применение различные биодобавки ко многим продуктам оргсинтеза. В сельском хозяйстве применяются вещества, способные повысить урожаи (стимуляторы роста, гербициды и др.) или отпугнуть вредителей (феромоны, гормоны насекомых), излечить от болезней растения и животных и многие другие...

Все эти вышеперечисленные успехи были достигнуты с применением знаний и методов современной химии. Внедрение продуктов химии в медицину открывают безграничные возможности для преодоления ряда заболеваний, в первую очередь вирусных и сердечно - сосудистых.

В современной биологии и медицине химии принадлежит одна из ведущих ролей, и значение химической науки с каждым годом будет только расти.

Список л итературы

1. А.М. Радецкий. Органическая химия и медицина.//Химия в школе (1995)

2. К.А. Макаров. Химия и медицина. М.:Просвещение,1981

3. А.Е. Браунштейн. На стыке химии и биологии. М.:Наука,1987

4. Биология и медицина. //Сб. трудов. М.:Наука,1985

5. М.Д. Машковский. Лекарственные средства: справочник. М.:Медицина,1995

6. П.Л. Сенов. Фармацевтическая химия. - Издательство «Медицина». Москва, 1971.

Размещено на Allbest.ru

Подобные документы

    Исследование источников получения лекарственных средств. Классификация медикаментов по Машковскому. Характеристика систем создания, производства, аптечного и промышленного производства, распределения лекарственных препаратов и других аптечных товаров.

    презентация , добавлен 02.04.2019

    Микрофлора готовых лекарственных форм. Микробное обсеменение лекарственных препаратов. Способы предупреждения микробной порчи готовых лекарственных веществ. Нормы микробов в нестерильных лекарственных формах. Стерильные и асептические препараты.

    презентация , добавлен 06.10.2017

    Основные задачи фармакологии: создание лекарственных препаратов; изучение механизмов действия лекарственных средств; исследование фармакодинамики и фармакокинетики препаратов в эксперименте и клинической практике. Фармакология синаптотропных средств.

    презентация , добавлен 08.04.2013

    Противогрибковые препараты, их роль в современной фармакотерапии и классификация. Анализ регионального рынка противогрибковых лекарственных препаратов. Характеристика фунгицидных, фунгистатических и противобактериальных лекарственных препаратов.

    курсовая работа , добавлен 14.12.2014

    Государственное регулирование в сфере обращения лекарственных средств. Фальсификация лекарственных препаратов как важная проблем сегодняшнего фармацевтического рынка. Анализ состояния контроля качества лекарственных препаратов на современном этапе.

    курсовая работа , добавлен 07.04.2016

    Создание первых современных психотропных препаратов. Краткая характеристика транквилизаторов, нейролептиков и антидепрессантов, наступление терапевтического эффекта, осложнения и их терапия. Побочные действия препаратов и методы сестринского ухода.

    реферат , добавлен 18.10.2010

    Изучение характеристики, классификации и назначения лекарственных препаратов, которые используются при лечении атеросклероза. Исследование ассортимента антисклеротических лекарственных средств и динамики обращения в аптеку за препаратами данной группы.

    курсовая работа , добавлен 14.01.2018

    Помещение и условия хранения фармацевтической продукции. Особенности контроля качества лекарственных средств, правила Good Storage Practice. Обеспечение качества лекарственных препаратов и средств в аптечных организациях, их выборочный контроль.

    реферат , добавлен 16.09.2010

    Причины возникновения и симптомы аллергии. Классификация противоаллергических лекарственных препаратов. Маркетинговые исследования ассортимента противоаллергических лекарственных препаратов аптеки, расчёт широты, полноты и глубины ассортимента.

    дипломная работа , добавлен 22.02.2017

    Изучение современных лекарственных препаратов для контрацепции. Способы их применения. Последствия взаимодействия при совместном применении контрацептивов с другими препаратами. Механизм действия негормональных и гормональных лекарственных препаратов.

  • ЛЕКАРСТВЕННЫЕ СРЕДСТВА, РЕГУЛИРУЮЩИЕ ФУНКЦИИ ПЕРИФЕРИЧЕСКОГО ОТДЕЛА НЕРВНОЙ СИСТЕМЫ
  • А. ЛЕКАРСТВЕННЫЕ СРЕДСТВА, ВЛИЯЮЩИЕ НА АФФЕРЕНТНУЮ ИННЕРВАЦИЮ (ГЛАВЫ 1, 2)
  • ГЛАВА 1 ЛЕКАРСТВЕННЫЕ СРЕДСТВА, ПОНИЖАЮЩИЕ ЧУВСТВИТЕЛЬНОСТЬ ОКОНЧАНИЙ АФФЕРЕНТНЫХ НЕРВОВ ИЛИ ПРЕПЯТСТВУЮЩИЕ ИХ ВОЗБУЖДЕНИЮ
  • ГЛАВА 2 ЛЕКАРСТВЕННЫЕ СРЕДСТВА, СТИМУЛИРУЮЩИЕ ОКОНЧАНИЯ АФФЕРЕНТНЫХ НЕРВОВ
  • Б. ЛЕКАРСТВЕННЫЕ СРЕДСТВА, ВЛИЯЮЩИЕ НА ЭФФЕРЕНТНУЮ ИННЕРВАЦИЮ (ГЛАВЫ 3, 4)
  • ЛЕКАРСТВЕННЫЕ СРЕДСТВА, РЕГУЛИРУЮЩИЕ ФУНКЦИИ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ (ГЛАВЫ 5-12)
  • ЛЕКАРСТВЕННЫЕ СРЕДСТВА, РЕГУЛИРУЮЩИЕ ФУНКЦИИ ИСПОЛНИТЕЛЬНЫХ ОРГАНОВ И СИСТЕМ (ГЛАВЫ 13-19) ГЛАВА 13 ЛЕКАРСТВЕННЫЕ СРЕДСТВА, ВЛИЯЮЩИЕ НА ФУНКЦИИ ОРГАНОВ ДЫХАНИЯ
  • ГЛАВА 14 ЛЕКАРСТВЕННЫЕ СРЕДСТВА, ВЛИЯЮЩИЕ НА СЕРДЕЧНО-СОСУДИСТУЮ СИСТЕМУ
  • ГЛАВА 15 ЛЕКАРСТВЕННЫЕ СРЕДСТВА, ВЛИЯЮЩИЕ НА ФУНКЦИИ ОРГАНОВ ПИЩЕВАРЕНИЯ
  • ГЛАВА 18 ЛЕКАРСТВЕННЫЕ СРЕДСТВА, ВЛИЯЮЩИЕ НА КРОВЕТВОРЕНИЕ
  • ГЛАВА 19 ЛЕКАРСТВЕННЫЕ СРЕДСТВА, ВЛИЯЮЩИЕ НА АГРЕГАЦИЮ ТРОМБОЦИТОВ, СВЕРТЫВАНИЕ КРОВИ И ФИБРИНОЛИЗ
  • ЛЕКАРСТВЕННЫЕ СРЕДСТВА, РЕГУЛИРУЮЩИЕ ПРОЦЕССЫ ОБМЕНА ВЕЩЕСТВ (ГЛАВЫ 20-25) ГЛАВА 20 ГОРМОНАЛЬНЫЕ ПРЕПАРАТЫ
  • ГЛАВА 22 СРЕДСТВА, ПРИМЕНЯЕМЫЕ ПРИ ГИПЕРЛИПОПРОТЕИНЕМИИ (ПРОТИВОАТЕРОСКЛЕРОТИЧЕСКИЕ СРЕДСТВА)
  • ГЛАВА 24 СРЕДСТВА, ПРИМЕНЯЕМЫЕ ДЛЯ ЛЕЧЕНИЯ И ПРОФИЛАКТИКИ ОСТЕОПОРОЗА
  • ЛЕКАРСТВЕННЫЕ СРЕДСТВА, УГНЕТАЮЩИЕ ВОСПАЛЕНИЕ И ВЛИЯЮЩИЕ НА ИММУННЫЕ ПРОЦЕССЫ (ГЛАВЫ 26-27) ГЛАВА 26 ПРОТИВОВОСПАЛИТЕЛЬНЫЕ СРЕДСТВА
  • ПРОТИВОМИКРОБНЫЕ И ПРОТИВОПАРАЗИТАРНЫЕ СРЕДСТВА (ГЛАВЫ 28-33)
  • ГЛАВА 29 АНТИБАКТЕРИАЛЬНЫЕ ХИМИОТЕРАПЕВТИЧЕСКИЕ СРЕДСТВА 1
  • СРЕДСТВА, ПРИМЕНЯЕМЫЕ ПРИ ЗЛОКАЧЕСТВЕННЫХ НОВООБРАЗОВАНИЯХ ГЛАВА 34 ПРОТИВООПУХОЛЕВЫЕ (ПРОТИВОБЛАСТОМНЫЕ) СРЕДСТВА 1
  • 3. О СОЗДАНИИ НОВЫХ ЛЕКАРСТВЕННЫХ СРЕДСТВ

    3. О СОЗДАНИИ НОВЫХ ЛЕКАРСТВЕННЫХ СРЕДСТВ

    Прогресс фармакологии характеризуется непрерывным поиском и созданием новых, более активных и безопасных препаратов. Путь их от химического соединения до лекарственного средства представлен на схеме 1.1.

    В последнее время в получении новых лекарственных средств все большее значение приобретают фундаментальные исследования. Они касаются не только химических (теоретической химии, физической химии и др.), но и сугубо биологических проблем. Успехи молекулярной биологии, молекулярной генетики, молекулярной фармакологии стали существенным образом сказываться на таком прикладном аспекте фармакологии, как создание новых препаратов. Действительно, открытие многих эндогенных лигандов, вторичных передатчиков, пресинаптических рецепторов, нейромодуляторов, выделение отдельных рецепторов, разработка методов исследования функции ионных каналов и связывания веществ с рецепторами, успехи генной инженерии и т.п. - все это сыграло решающую роль в определении наиболее перспективных направлений конструирования новых лекарственных средств.

    Большая значимость фармакодинамических исследований для решения прикладных задач современной фармакологии очевидна. Так, открытие механизма действия нестероидных противовоспалительных средств принципиально изменило пути поиска и оценки таких препаратов. Новое направление в фармакологии связано с выделением, широким исследованием и внедрением в медицинскую практику простагландинов. Открытие системы простациклин- тромбоксан явилось серьезной научной основой для целенаправленного поиска и практического применения антиагрегантов. Выделение энкефалинов и эндорфинов стимулировало исследования по синтезу и изучению опиоидных пептидов с разным спектром рецепторного действия. Установление роли протонового насоса в секреции хлористоводородной кислоты желудка привело к созданию неизвестных ранее препаратов - ингибиторов протонового насоса. Открытие эндотелиального релаксирующего фактора (NO) позволило

    Схема 1.1. Последовательность создания и внедрения лекарственных средств.

    Примечание. МЗ РФ - Министерство здравоохранения РФ.

    объяснить механизм сосудорасширяющего действия м-холиномиметиков. Эти работы способствовали также выяснению механизма вазодилатирующего эффекта нитроглицерина и натрия нитропруссида, что важно для дальнейших поисков новых физиологически активных соединений. Исследование механизмов фибринолиза позволило создать ценный избирательно действующий фибринолитик - тканевый активатор профибринолизина. Таких примеров можно привести много.

    Создание лекарственных средств обычно начинается с исследований химиков и фармакологов, творческое содружество которых является основой для «конструирования» новых препаратов.

    Поиск новых лекарственных средств развивается по следующим направлениям.

    I. Химический синтез препаратов А. Направленный синтез:

    1) воспроизведение биогенных веществ;

    2) создание антиметаболитов;

    3) модификация молекул соединений с известной биологической активностью;

    4) изучение структуры субстрата, с которым взаимодействует лекарственное средство;

    5) сочетание фрагментов структур двух соединений с необходимыми свойствами;

    6) синтез, основанный на изучении химических превращений веществ в организме (пролекарства; средства, влияющие на механизмы биотрансформации веществ).

    Б. Эмпирический путь:

    1) случайные находки;

    2) скрининг.

    II. Получение препаратов из лекарственного сырья и выделение индивидуальных веществ:

    1) животного происхождения;

    2) растительного происхождения;

    3) из минералов.

    III. Выделение лекарственных веществ, являющихся продуктами жизне- деятельности грибов и микроорганизмов; биотехнология (клеточная и генная ин- женерия)

    Как уже отмечалось, в настоящее время лекарственные средства получают главным образом посредством химического синтеза. Один из важных путей направленного синтеза заключается в воспроизведении биогенных веществ, образующихся в живых организмах. Так, например, были синтезированы адреналин, норадреналин, γ-аминомасляная кислота, простагландины, ряд гормонов и другие физиологически активные соединения.

    Поиск антиметаболитов (антагонистов естественных метаболитов) также привел к получению новых лекарственных средств. Принцип создания антиметаболитов заключается в синтезе структурных аналогов естественных метаболитов, оказывающих противоположное метаболитам действие. Например, антибактериальные средства сульфаниламиды сходны по строению с парааминобензойной кислотой (см. ниже), необходимой для жизнедеятельности микроорганизмов, и являются ее антиметаболитами. Изменяя структуру фрагментов молекулы ацетилхолина, также можно получить его антагонисты. Ниже

    приведено строение ацетилхолина и его антагониста - ганглиоблокатора гигрония. В обоих случаях имеется явная структурная аналогия в каждой из пар соединений.

    Один из наиболее распространенных путей изыскания новых лекарственных средств - химическая модификация соединений с известной биологической активностью. Главная задача таких исследований заключается в создании новых препаратов (более активных, менее токсичных), выгодно отличающихся от уже известных. Исходными соединениями могут служить естественные вещества растительного (рис. I.8) и животного происхождения, а также синтетические вещества. Так, на основе гидрокортизона, продуцируемого корой надпочечника, синтезированы многие значительно более активные глюкокортикоиды, в меньшей степени влияющие на водно-солевой обмен, чем их прототип. Известны сотни синтезированных сульфаниламидов, барбитуратов и других соединений, из которых лишь отдельные вещества, структура которых обеспечивает необходимые фармакотерапевтические свойства, внедрены в медицинскую практику. Подобные исследования рядов соединений направлены также на решение одной из основных проблем фармакологии - выяснение зависимости между химическим строением веществ, их физико-химическими свойствами и биологической активностью. Установление таких закономерностей позволяет проводить синтез препаратов более целенаправленно. При этом важно выяснить, какие химические группировки и особенности структуры определяют основные эффекты действия исследуемых веществ.

    В последние годы наметились новые подходы к созданию лекарственных препаратов. За основу берется не биологически активное вещество, как это делалось ранее, а субстрат, с которым оно взаимодействует (рецептор, фермент и т.п.). Для таких исследований необходимы максимально подробные данные о трехмерной структуре тех макромолекул, которые являются основной «мишенью» для препарата. В настоящее время имеется банк таких данных, включающих значительное число ферментов и нуклеиновых кислот. Прогрессу в этом направлении способствовал ряд факторов. Прежде всего был усовершенствован рентгеноструктурный анализ, а также разработана спектроскопия, основанная на ядерно-магнитном резонансе. Последний метод открыл принципиально новые возможности, так как позволил устанавливать трехмерную структуру веществ в растворе, т.е. в некристаллическом состоянии. Существенным моментом явилось и то, что с помощью генной инженерии удалось получить достаточное количество субстратов для подробного химического и физико-химического исследования.

    Используя имеющиеся данные о свойствах многих макромолекул, удается с помощью компьютеров моделировать их структуру. Это дает четкое представление о геометрии не только всей молекулы, но и ее активных центров, взаимодействующих с лигандами. Исследуются особенности топографии поверхности

    Рис. I.8. (I-IV) Получение препаратов из растительного сырья и создание их синтетических заменителей (на примере курареподобных средств).

    I. Первоначально из ряда растений Южной Америки индейцами был выделен стрельный яд - кураре, вызывающий паралич скелетных мышц.

    а, б - растения, из которых получают кураре; в - высушенные тыквенные горшочки с кураре и орудия охоты индейцев; г - охота с помощью кураре. В длинные трубки (духовые ружья) индейцы помещали маленькие легкие стрелы с остриями, смазанными кураре; энергичным выдохом охотник посылал стрелу в цель; из места попадания стрелы кураре всасывалось, наступал паралич мышц, и животное становилось добычей охотников.

    II. В 1935 г. было установлено химическое строение одного из основных алкалоидов кураре - тубокурарина.

    III. В медицине очищенное кураре, содержащее смесь алкалоидов (препараты курарин, интокострин), начали применять с 1942 г. Затем стали использовать раствор алкалоида тубокурарина хлорида (лекарственный препарат известен также под названием «тубарин»). Тубокурарина хлорид применяют для расслабления скелетных мышц при проведении хирургических операций.

    IV. В дальнейшем были получены многие синтетические курареподобные средства. При их создании исходили из структуры тубокурарина хлорида, имеющего 2 катионных центра (N+- N+), расположенных на определенном расстоянии друг от друга.

    субстрата, характер его структурных элементов и возможные виды межатомного взаимодействия с эндогенными веществами или ксенобиотиками. С другой стороны, компьютерное моделирование молекул, использование графических систем и соответствующих статистических методов позволяют составить достаточно полное представление о трехмерной структуре фармакологических веществ и распределении их электронных полей. Такая суммарная информация о физиологически активных веществах и субстрате должна способствовать эффективному конструированию потенциальных лигандов с высокими комплементарностью и аффинитетом. До сих пор о таких возможностях можно было только мечтать, сейчас это становится реальностью.

    Генная инженерия открывает дополнительные возможности исследования значимости отдельных компонентов рецептора для их специфического связывания с агонистами или антагонистами. Этими методами удается создавать комплексы с отдельными субъединицами рецепторов, субстраты без предполагаемых мест связывания лигандов, белковые структуры с нарушенным составом или последовательностью аминокислот и т.д.

    Не приходится сомневаться в том, что мы находимся на пороге принципиальных изменений в тактике создания новых препаратов.

    Привлекает внимание возможность создания новых препаратов на основе изучения их химических превращений в организме. Эти исследования развиваются в двух направлениях. Первое направление связано с созданием так называемых пролекарств. Они представляют собой либо комплексы «вещество-носитель - активное вещество», либо являются биопрекурзорами.

    При создании комплексов «вещество-носитель-активное вещество» чаще всего имеется в виду направленный транспорт. «Вещество-носитель» обычно соединяется с активным веществом за счет ковалентных связей. Высвобождается активное соединение под влиянием соответствующих ферментов на месте действия вещества. Желательно, чтобы носитель распознавался клеткой-«мишенью». В этом случае можно добиться значительной избирательности действия.

    Функцию носителей могут выполнять белки, пептиды и другие соединения. Так, например, можно получить моноклональные антитела к специфическим антигенам эпителия молочных желез. Такие антитела-носители в комплексе с противобластомными средствами, очевидно, могут быть испытаны при лечении диссеминированного рака молочной железы. Из пептидных гормонов в качестве носителя представляет интерес β-меланотропин, который распознается злокачественными клетками меланомы. Гликопротеины могут довольно избирательно взаимодействовать с гепатоцитами и некоторыми клетками гепатомы.

    Избирательное расширение почечных сосудов наблюдается при использовании γ-глутамил-ДОФА, который подвергается в почках метаболическим превращениям, приводящим к высвобождению дофамина.

    Иногда «вещества-носители» используют для транспорта препаратов через биологические мембраны. Так, известно, что ампициллин плохо всасывается из кишечника (около 40%). Его эстерифицированное липофильное пролекарство - бакампициллин - абсорбируется из пищеварительного тракта на 98-99%. Сам бакампициллин неактивен; противомикробная активность проявляется только при отщеплении эстеразами в сыворотке крови ампициллина.

    Для облегчения прохождения через биологические барьеры обычно используют липофильные соединения. Помимо уже приведенного примера, можно назвать цетиловый эфир γ-аминомасляная кислота (ГАМК), который в отличие от ГАМК легко проникает в ткани мозга. Хорошо проходит через роговую оболочку глаза фармакологически инертный дипивалиновый эфир адреналина. В тканях глаза он подвергается энзиматическому гидролизу, что приводит к локальному образованию адреналина. В связи с этим дипивалиновый эфир адреналина, названный дипивефрином, оказался эффективным при лечении глаукомы.

    Другая разновидность пролекарств получила название биопрекурзоров (или метаболических прекурзоров). В отличие от комплекса «вещество-носитель- активное вещество», основанного на временной связи обоих компонентов, биопрекурзор представляет собой новое химическое вещество. В организме из него образуется другое соединение - метаболит, который и является активным веществом. Примеры образования в организме активных метаболитов хорошо известны (пронтозил-сульфаниламид, имипрамин-дезметилимипрамин, L-ДОФА-до- фамин и др.). По этому же принципу был синтезирован про-2-РАМ, который в отличие от 2-РАМ хорошо проникает в ЦНС, где высвобождается активный реактиватор ацетилхолинэстеразы 2-РАМ.

    Помимо повышения селективности действия, увеличения липофильности и соответственно биодоступности, пролекарства могут быть использованы

    для создания водорастворимых препаратов (для парентерального введения), а также для устранения нежелательных органолептических и физико-химических свойств.

    Второе направление, основанное на исследовании биотрансформации веществ, предусматривает изучение механизмов их химических превращений. Знание ферментативных процессов, обеспечивающих метаболизм веществ, позволяет создавать препараты, которые изменяют активность ферментов. Так, например, синтезированы ингибиторы ацетилхолинэстеразы (прозерин и другие антихолинэстеразные средства), которые усиливают и пролонгируют действие естественного медиатора ацетилхолина. Получены также ингибиторы фермента МАО, участвующей в инактивации норадреналина, дофамина, серотонина (к ним относятся антидепрессант ниаламид и др.). Известны вещества, которые индуцируют (усиливают) синтез ферментов, участвующих в процессах детоксикации химических соединений (например, фенобарбитал).

    Помимо направленного синтеза, до сих пор сохраняет определенное значение эмпирический путь получения лекарственных средств. Ряд препаратов был введен в медицинскую практику в результате случайных находок. Так, снижение уровня сахара крови, обнаруженное при использовании сульфаниламидов, привело к синтезу их производных с выраженными гипогликемическими свойствами. Сейчас они широко применяются при лечении сахарного диабета (бутамид и аналогичные ему препараты). Действие тетурама (антабуса), используемого при лечении алкоголизма, также было обнаружено случайно в связи с его применением в промышленном производстве при изготовлении резины.

    Одной из разновидностей эмпирического поиска является скрининг 1 . В этом случае любые химические соединения, которые могут быть предназначены и для немедицинских целей, проверяют на биологическую активность с использованием разнообразных методик. Скрининг - весьма трудоемкий и малоэффективный путь эмпирического поиска лекарственных веществ. Однако иногда он неизбежен, особенно если исследуется новый класс химических соединений, свойства которых, исходя из их структуры, трудно прогнозировать.

    В арсенале лекарственных средств, помимо синтетических препаратов, значительное место занимают препараты и индивидуальные вещества из лекарственного сырья (растительного, животного происхождения и из минералов; табл. I.2). Таким путем получены многие широко применяемые медикаменты не только в виде более или менее очищенных препаратов (галеновы, новогаленовы, органопрепараты), но также в виде индивидуальных химических соединений (алкалоиды 2 , гликозиды 3). Так, из опия выделяют алкалоиды морфин, кодеин, папаверин, из раувольфии змеевидной - резерпин, из наперстянки - сердечные гликозиды дигитоксин, дигоксин, из ряда эндокринных желез - гормоны.

    1 От англ. to screen - просеивать.

    2 Алкалоиды - азотистые органические соединения, содержащиеся главным образом в растениях. Свободные алкалоиды представляют собой основания [отсюда название алкалоидов: al-qili (арабск.) - щелочь, eidos (греч.) - вид]. В растениях они обычно содержатся в виде солей. Многие алкалоиды обладают высокой биологической активностью (морфин, атропин, пилокарпин, никотин и др.).

    3 Гликозиды - группа органических соединений растительного происхождения, распадающихся при воздействии ферментов или кислот на сахар, или гликон (от греч. glykys - сладкий), и несахаристую часть, или агликон. Ряд гликозидов используется в качестве лекарственных средств (строфантин, дигоксин и др.).

    Таблица I.2. Препараты природного происхождения

    Некоторые лекарственные вещества являются продуктами жизнедеятельности грибов и микроорганизмов.

    Успешное развитие этого пути привело к созданию современной биотехнологии, заложившей основы для создания нового поколения лекарственных средств. В фармацевтической промышленности уже сейчас происходят большие изменения, а в ближайшей перспективе ожидаются радикальные перемены. Связано это с бурным развитием биотехнологии. В принципе биотехнология была известна давно. Уже в 40-е годы ХХ в. стали получать пенициллин методом ферментации из культуры определенных видов плесневого гриба пенициллиум. Эта технология была использована и при биосинтезе других антибиотиков. Однако в середине 70-х годов произошел резкий скачок в развитии биотехнологии. Это связано с двумя крупными открытиями: разработкой гибридомной технологии (клеточная инженерия) и метода рекомбинантных ДНК (генная инженерия), которые и определили прогресс современной биотехнологии.

    Биотехнология - это мультидисциплина, в развитии которой большую роль играют молекулярная биология, включая молекулярную генетику, иммунология, различные области химии и ряд технических дисциплин. Основным содержанием биотехнологии является использование в промышленности биологических систем и процессов. Обычно для получения необходимых соединений используют микроорганизмы, культуры клеток, ткани растений и животных.

    На основе биотехнологии удалось создать десятки новых лекарственных средств. Так, получены инсулин человека; гормон роста; интерфероны; интерлейкин-2; факторы роста, регулирующие гемопоэз - эритропоэтин, филграстим, молграмостим; антикоагулянт лепирудин (ре- комбинантный вариант гирудина); фибринолитик урокиназа; тканевый активатор профибринолизина алтеплаза; противолейкемический препарат L-аспарагиназа и многие другие.

    Большой интерес представляют также моноклональные антитела, которые могут быть использованы при лечении опухолей (например, препарат этой группы трастузумаб эффективен при раке молочной железы, а ритуксимаб - при лимфогранулематозе). К группе моноклональных антител относится также антиагрегант абциксимаб. Кроме того, моноклональные антитела находят применение в качестве антидотов, в частности, при интоксикации дигоксином и другими сердечными гликозидами. Один из таких антидотов выпускается под названием Digoxin immune fab (Digibind).

    Совершенно очевидно, что роль и перспективы биотехнологии в отношении создания препаратов новых поколений очень велики.

    При фармакологическом исследовании потенциальных препаратов подробно изучается фармакодинамика веществ: их специфическая активность, длительность эффекта, механизм и локализация действия. Важным аспектом исследования является фармакокинетика веществ: всасывание, распределение и превращение в организме, а также пути выведения. Специальное внимание уделяется побочным эффектам, токсичности при однократном и длительном применении, тератогенности, канцерогенности, мутагенности. Необходимо сравнивать новые вещества с известными препаратами тех же групп. При фармакологической оценке соединений используют разнообразные физиологические, биохимические, биофизические, морфологические и другие методы исследования.

    Большое значение имеет изучение эффективности веществ при соответствующих патологических состояниях (экспериментальная фармакотерапия). Так, лечебное действие противомикробных веществ испытывают на животных, зараженных возбудителями определенных инфекций, противобластомные средства - на животных с экспериментальными и спонтанными опухолями. Кроме того, желательно располагать сведениями об особенностях действия веществ на фоне тех патологических состояний, при которых они могут быть использованы (например, при атеросклерозе, инфаркте миокарда, воспалении). Это направление, как уже отмечалось, получило название «патологической фармакологии». К сожалению, существующие экспериментальные модели редко полностью соответствуют тому, что наблюдается в клинике. Тем не менее они в какой-то мере имитируют условия, в которых назначают лекарственные средства, и тем самым приближают экспериментальную фармакологию к практической медицине.

    Результаты исследования веществ, перспективных в качестве лекарственных препаратов, передают в Фармакологический комитет МЗ РФ, в который входят эксперты разных специальностей (в основном фармакологи и клиницисты). Если Фармакологический комитет считает проведенные экспериментальные исследования исчерпывающими, предлагаемое соединение передают в клиники, имеющие необходимый опыт исследования лекарственных веществ. Это очень важный этап, так как решающее слово в оценке новых лекарственных средств принадлежит клиницистам. Большая роль в этих исследованиях отводится клини- ческим фармакологам, основной задачей которых являются клиническое изучение фармакокинетики и фармакодинамики лекарственных веществ, в том числе новых препаратов, и разработка на этой основе наиболее эффективных и безвредных методов их применения.

    При клиническом испытании новых лекарственных средств следует исходить из ряда принципов (табл. I.3). Прежде всего их необходимо исследовать на значительном контингенте больных. Во многих странах этому часто предшествует испытание на здоровых (добровольцах). Очень важно, чтобы каждое новое вещество сравнивалось с хорошо известными препаратами той же группы (например,

    Таблица I.3. Принципы клинического исследования новых лекарственных средств (их фар- макотерапевтической эффективности, побочных и токсических эффектов)

    опиоидные анальгетики - с морфином, сердечные гликозиды - со строфантином и гликозидами наперстянки). Новое лекарственное средство обязательно должно отличаться от имеющихся в лучшую сторону.

    При клиническом испытании веществ необходимо использовать объективные методы, позволяющие количественно оценить наблюдаемые эффекты. Комплексное исследование с использованием большого набора адекватных методик - еще одно из требований, предъявляемых к клиническим испытаниям фармакологических веществ.

    В случаях, когда в эффективности веществ существенную роль может играть элемент суггестии (внушения), используют плацебо 1 - лекарственные формы, которые по внешнему виду, запаху, вкусу и прочим свойствам имитируют принимаемый препарат, но не содержат лекарственного вещества (состоят лишь из индифферентных формообразующих веществ). При «слепом контроле» в неизвестной для больного последовательности чередуют лекарственное вещество и плацебо. Только лечащий врач знает, когда больной принимает плацебо. При «двойном слепом контроле» об этом информировано третье лицо (заведующий отделением или другой врач). Такой принцип исследования веществ позволяет особенно объективно оценить их действие, так как при ряде патологических состояний (например, при некоторых болях) плацебо может давать положительный эффект у значительной части больных.

    Достоверность данных, полученных разными методами, должна быть подтверждена статистически.

    Важным элементом клинического исследования новых препаратов является соблюдение этических принципов. Например, необходимо согласие пациентов на включение их в определенную программу изучения нового лекарственного средства. Нельзя проводить испытания на детях, беременных женщинах, пациентах с психическими заболеваниями. Применение плацебо исключено, если заболевание угрожает жизни. Однако решать эти вопросы не всегда просто, так как в интересах больных иногда приходится идти на определенный риск. Для решения этих задач существуют специальные этические комитеты, которые рас-

    1 От лат. placeo - понравлюсь.

    сматривают соответствующие аспекты при проведении испытаний новых лекарственных средств.

    В большинстве стран клиническое испытание новых лекарственных веществ обычно проходит 4 фазы.

    1-я фаза. Проводится на небольшой группе здоровых добровольцев. Устанавливаются оптимальные дозировки, которые вызывают желаемый эффект. Целесообразны также фармакокинетические исследования, касающиеся всасывания веществ, периода их «полужизни», метаболизма. Рекомендуется, чтобы такие ис- следования выполняли клинические фармакологи.

    2-я фаза. Проводится на небольшом количестве больных (обычно до 100-200) с заболеванием, для лечения которого предлагается данный препарат. Детально исследуются фармакодинамика (включая плацебо) и фармакокинетика веществ, регистрируются возникающие побочные эффекты. Эту фазу апробации рекомендуется проводить в специализированных клинических центрах.

    3-я фаза. Клиническое (рандомизированное 1 контролируемое) испытание на большом контингенте больных (до нескольких тысяч). Подробно изучаются эффективность (включая «двойной слепой контроль») и безопасность веществ. Специальное внимание обращают на побочные эффекты, в том числе аллергические реакции, и токсичность препарата. Проводится сопоставление с другими препаратами этой группы. Если результаты проведенного исследования положительные, материалы представляются в официальную организацию, которая дает разрешение на регистрацию и выпуск препарата для практического применения. В нашей стране это Фармакологический комитет МЗ РФ, решения которого утверждаются министром здравоохранения.

    Прогресс фармакологии характеризуется непрерывным поиском и созданием новых, более активных и безопасных препаратов. Путь их от химического соединения до лекарственного средства представлен на схеме.

    Последовательность создания и внедрения лекарственных средств. Примечание. МЗ РФ - Министерство здравоохранения РФ

    В последнее время в получении новых лекарственных средств все большее значение приобретают фундаментальные исследования. Они касаются не только химических (теоретической химии, физической химии и др.), но и сугубо биологических проблем. Успехи молекулярной биологии, молекулярной генетики, молекулярной фармакологии стали существенным образом сказываться на таком прикладном аспекте фармакологии, как создание новых препаратов. Действительно, открытие многих эндогенных лигандов, вторичных передатчиков, пресинаптических рецепторов, нейромодуляторов, выделение отдельных рецепторов, разработка методов исследования функции ионных каналов и связывания веществ с рецепторами, успехи генной инженерии и т. п. - все это сыграло решающую роль в определении наиболее перспективных направлений конструирования новых лекарственных средств.

    Большая значимость фармакодинамических исследований для решения прикладных задач современной фармакологии очевидна. Так, открытие механизма действия нестероидных противовоспалительных средств принципиально изменило пути поиска и оценки таких препаратов. Новое направление в фармакологии связано с выделением, широким исследованием и внедрением в медицинскую практику простагландинов. Открытие системы простациклин - тромбоксан явилось серьезной научной основой для целенаправленного поиска и практического применения антиагрегантов. Выделение энкефалинов и эндорфинов стимулировало исследования по синтезу и изучению опиоидных пептидов с разным спектром рецепторного действия. Установление роли протонового насоса в секреции хлористоводородной кислоты желудка привело к созданию неизвестных ранее препаратов - ингибиторов протонового насоса. Открытие эндотелиального релаксирующего фактора (NO) позволило объяснить механизм сосудорасширяющего действия м-холиномиметиков. Эти работы способствовали также выяснению механизма вазодилатирующего эффекта нитроглицерина и натрия нитропруссида, что важно для дальнейших поисков новых физиологически активных соединений. Исследование механизмов фибринолиза позволило создать ценный избирательно действующий фибринолитик - тканевый активатор профибринолизина. Таких примеров можно привести много.

    Создание лекарственных средств обычно начинается с исследований химиков и фармакологов, творческое содружество которых является основой для «конструирования» новых препаратов.

    Направления поиска новых лекарственных средств

    I. Химический синтез препаратов

    А. Направленный синтез :

    1) воспроизведение биогенных веществ;

    2) создание антиметаболитов;

    3) модификация молекул соединений с известной биологической активностью;

    4) изучение структуры субстрата, с которым взаимодействует лекарственное средство;

    5) сочетание фрагментов структур двух соединений с необходимыми свойствами;

    6) синтез, основанный на изучении химических превращений веществ в организме (пролекарства; средства, влияющие на механизмы биотрансформации веществ).

    Б. Эмпирический путь :

    1) случайные находки;

    2) скрининг.

    II. Получение препаратов из лекарственного сырья и выделение индивидуальных веществ :

    1) животного происхождения;

    2) растительного происхождения;

    3) из минералов.

    III. Выделение лекарственных веществ, являющихся продуктами жизнедеятельности грибов и микроорганизмов; биотехнология (клеточная и генная инженерия)

    Как уже отмечалось, в настоящее время лекарственные средства получают главным образом посредством химического синтеза. Один из важных путей направленного синтеза заключается в воспроизведении биогенных веществ, образующихся в живых организмах. Так, например, были синтезированы адреналин, норадреналин, Y-аминомасляная кислота, простагландины, ряд гормонов и другие физиологически активные соединения.

    Поиск антиметаболитов (антагонистов естественных метаболитов) также привел к получению новых лекарственных средств. Принцип создания антиметаболитов заключается в синтезе структурных аналогов естественных метаболитов, оказывающих противоположное метаболитам действие. Например, антибактериальные средства сульфаниламиды сходны по строению с парааминобензойной кислотой (см. ниже), необходимой для жизнедеятельности микроорганизмов, и являются ее антиметаболитами. Изменяя структуру фрагментов молекулы ацетилхолина, также можно получить его антагонисты. Ниже

    Приведено строение ацетилхолина и его антагониста - ганглиоблокатора гигрония. В обоих случаях имеется явная структурная аналогия в каждой из пар соединений.

    Один из наиболее распространенных путей изыскания новых лекарственных средств - химическая модификация соединений с известной биологической активностью. Главная задача таких исследований заключается в создании новых препаратов (более активных, менее токсичных), выгодно отличающихся от уже известных. Исходными соединениями могут служить естественные вещества растительного и животного происхождения, а также синтетические вещества. Так, на основе гидрокортизона, продуцируемого корой надпочечника, синтезированы многие значительно более активные глюкокортикоиды, в меньшей степени влияющие на водно-солевой обмен, чем их прототип. Известны сотни синтезированных сульфаниламидов, барбитуратов и других соединений, из которых лишь отдельные вещества, структура которых обеспечивает необходимые фармакотерапевтические свойства, внедрены в медицинскую практику. Подобные исследования рядов соединений направлены также на решение одной из основных проблем фармакологии - выяснение зависимости между химическим строением веществ, их физикохимическими свойствами и биологической активностью. Установление таких закономерностей позволяет проводить синтез препаратов более целенаправленно. При этом важно выяснить, какие химические группировки и особенности структуры определяют основные эффекты действия исследуемых веществ.

    В последние годы наметились новые подходы к созданию лекарственных препаратов. За основу берется не биологически активное вещество, как это делалось ранее, а субстрат, с которым оно взаимодействует (рецептор, фермент и т. п.). Для таких исследований необходимы максимально подробные данные о трехмерной структуре тех макромолекул, которые являются основной «мишенью» для препарата. В настоящее время имеется банк таких данных, включающих значительное число ферментов и нуклеиновых кислот. Прогрессу в этом направлении способствовал ряд факторов. Прежде всего был усовершенствован рентгеноструктурный анализ, а также разработана спектроскопия, основанная на ядерномагнитном резонансе. Последний метод открыл принципиально новые возможности, так как позволил устанавливать трехмерную структуру веществ в растворе, т. е. в некристаллическом состоянии. Существенным моментом явилось и то, что с помощью генной инженерии удалось получить достаточное количество субстратов для подробного химического и физикохимического исследования.

    Используя имеющиеся данные о свойствах многих макромолекул, удается с помощью компьютеров моделировать их структуру. Это дает четкое представление о геометрии не только всей молекулы, но и ее активных центров, взаимодействующих с лигандами. Исследуются особенности топографии поверхности

    Открытие новых препаратов на примере тубокурарина

    Рис. I.8. (I-IV) Получение препаратов из растительного сырья и создание их синтетических заменителей (на примере курареподобных средств). А, б - растения, из которых получают кураре; в - высушенные тыквенные горшочки с кураре и орудия охоты индейцев; г - охота с помощью кураре. В длинные трубки (духовые ружья) индейцы помещали маленькие легкие стрелы с остриями, смазанными кураре; энергичным выдохом охотник посылал стрелу в цель; из места попадания стрелы кураре всасывалось, наступал паралич мышц, и животное становилось добычей охотников.

    I. Первоначально из ряда растений Южной Америки индейцами был выделен стрельный яд - кураре, вызывающий паралич скелетных мышц.

    II. В 1935 г. было установлено химическое строение одного из основных алкалоидов кураре - тубокурарина.

    III. В медицине очищенное кураре, содержащее смесь алкалоидов (препараты курарин, интокострин), начали применять с 1942 г. Затем стали использовать раствор алкалоида тубокурарина хлорида (лекарственный препарат известен также под названием «тубарин»). Тубокурарина хлорид применяют для расслабления скелетных мышц при проведении хирургических операций.

    IV. В дальнейшем были получены многие синтетические курареподобные средства. При их создании исходили из структуры тубокурарина хлорида, имеющего 2 катионных центра (N+-N+), расположенных на определенном расстоянии друг от друга cубстрата, характер его структурных элементов и возможные виды межатомного взаимодействия с эндогенными веществами или ксенобиотиками. С другой стороны, компьютерное моделирование молекул, использование графических систем и соответствующих статистических методов позволяют составить достаточно полное представление о трехмерной структуре фармакологических веществ и распределении их электронных полей. Такая суммарная информация о физиологически активных веществах и субстрате должна способствовать эффективному конструированию потенциальных лигандов с высокими комплементарностью и аффинитетом. До сих пор о таких возможностях можно было только мечтать, сейчас это становится реальностью.

    Новые направления поиска лекарственных препаратов

    Генная инженерия открывает дополнительные возможности исследования значимости отдельных компонентов рецептора для их специфического связывания с агонистами или антагонистами. Этими методами удается создавать комплексы с отдельными субъединицами рецепторов, субстраты без предполагаемых мест связывания лигандов, белковые структуры с нарушенным составом или последовательностью аминокислот и т. д.

    Не приходится сомневаться в том, что мы находимся на пороге принципиальных изменений в тактике создания новых препаратов.

    Привлекает внимание возможность создания новых препаратов на основе изучения их химических превращений в организме. Эти исследования развиваются в двух направлениях.

    Первое направление связано с созданием пролекарств . Они представляют собой либо комплексы «вещество-носитель-активное вещество», либо являются биопрекурзорами.

    При создании комплексов «вещество-носитель-активное вещество» чаще всего имеется в виду направленный транспорт. «Вещество-носитель» обычно соединяется с активным веществом за счет ковалентных связей. Высвобождается активное соединение под влиянием соответствующих ферментов на месте действия вещества. Желательно, чтобы носитель распознавался клеткой-«мишенью». В этом случае можно добиться значительной избирательности действия.

    Функцию носителей могут выполнять белки, пептиды и другие соединения. Так, например, можно получить моноклональные антитела к специфическим антигенам эпителия молочных желез. Такие антитела-носители в комплексе с противобластомными средствами, очевидно, могут быть испытаны при лечении диссеминированного рака молочной железы. Из пептидных гормонов в качестве носителя представляет интерес бета-меланотропин, который распознается злокачественными клетками меланомы. Гликопротеины могут довольно избирательно взаимодействовать с гепатоцитами и некоторыми клетками гепатомы.

    Избирательное расширение почечных сосудов наблюдается при использовании Y-глутамил-ДОФА, который подвергается в почках метаболическим превращениям, приводящим к высвобождению дофамина.

    Иногда «вещества-носители» используют для транспорта препаратов через биологические мембраны. Так, известно, что ампициллин плохо всасывается из кишечника (около 40%). Его эстерифицированное липофильное пролекарство - бакампициллин - абсорбируется из пищеварительного тракта на 98-99%. Сам бакампициллин неактивен; противомикробная активность проявляется только при отщеплении эстеразами в сыворотке крови ампициллина.

    Для облегчения прохождения через биологические барьеры обычно используют липофильные соединения. Помимо уже приведенного примера, можно назвать цетиловый эфир Y-аминомасляная кислота (ГАМК), который в отличие от ГАМК легко проникает в ткани мозга. Хорошо проходит через роговую оболочку глаза фармакологически инертный дипивалиновый эфир адреналина. В тканях глаза он подвергается энзиматическому гидролизу, что приводит к локальному образованию адреналина. В связи с этим дипивалиновый эфир адреналина, названный дипивефрином, оказался эффективным при лечении глаукомы.

    Другая разновидность пролекарств получила название биопрекурзоров (или метаболических прекурзоров). В отличие от комплекса «вещество-носитель - активное вещество», основанного на временной связи обоих компонентов, биопрекурзор представляет собой новое химическое вещество. В организме из него образуется другое соединение - метаболит, который и является активным веществом. Примеры образования в организме активных метаболитов хорошо известны (пронтозил-сульфаниламид, имипрамин-дезметилимипрамин, L-ДОФА-дофамин и др.). По этому же принципу был синтезирован про-2-РАМ, который в отличие от 2-РАМ хорошо проникает в ЦНС, где высвобождается активный реактиватор ацетилхолинэстеразы 2-РАМ.

    Помимо повышения селективности действия, увеличения липофильности и соответственно биодоступности, пролекарства могут быть использованы для создания водорастворимых препаратов (для парентерального введения), а также для устранения нежелательных органолептических и физико-химических свойств.

    Второе направление, основанное на исследовании биотрансформации веществ , предусматривает изучение механизмов их химических превращений. Знание ферментативных процессов, обеспечивающих метаболизм веществ, позволяет создавать препараты, которые изменяют активность ферментов. Так, например, синтезированы ингибиторы ацетилхолинэстеразы (прозерин и другие антихолинэстеразные средства), которые усиливают и пролонгируют действие естественного медиатора ацетилхолина. Получены также ингибиторы фермента МАО, участвующей в инактивации норадреналина, дофамина, серотонина (к ним относятся антидепрессант ниаламид и др.). Известны вещества, которые индуцируют (усиливают) синтез ферментов, участвующих в процессах детоксикации химических соединений (например, фенобарбитал).

    Помимо направленного синтеза, до сих пор сохраняет определенное значение эмпирический путь получения лекарственных средств. Ряд препаратов был введен в медицинскую практику в результате случайных находок. Так, снижение уровня сахара крови, обнаруженное при использовании сульфаниламидов, привело к синтезу их производных с выраженными гипогликемическими свойствами. Сейчас они широко применяются при лечении сахарного диабета (бутамид и аналогичные ему препараты). Действие тетурама (антабуса), используемого при лечении алкоголизма, также было обнаружено случайно в связи с его применением в промышленном производстве при изготовлении резины.

    Одной из разновидностей эмпирического поиска является скрининг. В этом случае любые химические соединения, которые могут быть предназначены и для немедицинских целей, проверяют на биологическую активность с использованием разнообразных методик. Скрининг - весьма трудоемкий и малоэффективный путь эмпирического поиска лекарственных веществ. Однако иногда он неизбежен, особенно если исследуется новый класс химических соединений, свойства которых, исходя из их структуры, трудно прогнозировать.

    В арсенале лекарственных средств, помимо синтетических препаратов, значительное место занимают препараты и индивидуальные вещества из лекарственного сырья (растительного, животного происхождения и из минералов. Таким путем получены многие широко применяемые медикаменты не только в виде более или менее очищенных препаратов (галеновы, новогаленовы, органопрепараты), но также в виде индивидуальных химических соединений (алкалоиды, гликозиды). Так, из опия выделяют алкалоиды морфин, кодеин, папаверин, из раувольфии змеевидной - резерпин, из наперстянки - сердечные гликозиды дигитоксин, дигоксин, из ряда эндокринных желез - гормоны.

    Препараты природного происхождения

    Препарат Основное медицинское применение Источник получения
    Пилокарпин Для снижения внутриглазного давления при глаукоме Растения
    Атропин Спазмолитик, мидриатик
    Морфин Анальгетик
    Кодеин Противокашлевое средство
    Дигоксин Кардиотоник
    Хинин Противомалярийное средство
    Винкристин Противоопухолевое средство
    Пенициллин Антибиотик Микроорганизмы,
    Тетрациклин Антибиотик
    Ловастатин Гиполипидемическое средство
    Циклоспорин А Иммунодепрессант
    Актиномицин Противоопухолевое средство
    Доксорубицин Противоопухолевое средство
    Инсулин Противодиабетическое средство Ткани животных

    Морские организмы

    Паратиреоидин При недостаточности паращитовидных желез
    Панкреатин Пищеварительный фермент
    Цитарабин Противолейкемическое средство

    Боиотехнологии в создании новых лекарственных средств

    Некоторые лекарственные вещества являются продуктами жизнедеятельности грибов и микроорганизмов.

    Успешное развитие этого пути привело к созданию cовременной биотехнологии, заложившей основы для создания нового поколения лекарственных средств. В фармацевтической промышленности уже сейчас происходят большие изменения, а в ближайшей перспективе ожидаются радикальные перемены. Связано это с бурным развитием биотехнологии. В принципе биотехнология была известна давно. Уже в 40-е годы ХХ в. стали получать пенициллин методом ферментации из культуры определенных видов плесневого гриба пенициллиум. Эта технология была использована и при биосинтезе других антибиотиков. Однако в середине 70-х годов произошел резкий скачок в развитии биотехнологии. Это связано с двумя крупными открытиями: разработкой гибридомной технологии (клеточная инженерия) и метода рекомбинантных ДНК (генная инженерия), которые и определили прогресс современной биотехнологии.

    Биотехнология - это мультидисциплина, в развитии которой большую роль играют молекулярная биология, включая молекулярную генетику, иммунология, различные области химии и ряд технических дисциплин. Основным содержанием биотехнологии является использование в промышленности биологических систем и процессов. Обычно для получения необходимых соединений используют микроорганизмы, культуры клеток, ткани растений и животных.

    На основе биотехнологии удалось создать десятки новых лекарственных средств. Так, получены инсулин человека; гормон роста; интерфероны; интерлейкин-2; факторы роста, регулирующие гемопоэз - эритропоэтин, филграстим, молграмостим; антикоагулянт лепирудин (рекомбинантный вариант гирудина); фибринолитик урокиназа; тканевый активатор профибринолизина алтеплаза; противолейкемический препарат L-аспарагиназа и многие другие.

    Большой интерес представляют также моноклональные антитела , которые могут быть использованы при лечении опухолей (например, препарат этой группы трастузумаб эффективен при раке молочной железы, а ритуксимаб - при лимфогранулематозе). К группе моноклональных антител относится также антиагрегант абциксимаб. Кроме того, моноклональные антитела находят применение в качестве антидотов, в частности, при интоксикации дигоксином и другими сердечными гликозидами. Один из таких антидотов выпускается под названием Digoxin immune fab (Digibind).

    Совершенно очевидно, что роль и перспективы биотехнологии в отношении создания препаратов новых поколений очень велики.

    Изучение лекарственных свойств

    При фармакологическом исследовании потенциальных препаратов подробно изучается фармакодинамика веществ: их специфическая активность, длительность эффекта, механизм и локализация действия. Важным аспектом исследования является фармакокинетика веществ: всасывание, распределение и превращение в организме, а также пути выведения. Специальное внимание уделяется побочным эффектам, токсичности при однократном и длительном применении, тератогенности, канцерогенности, мутагенности. Необходимо сравнивать новые вещества с известными препаратами тех же групп. При фармакологической оценке соединений используют разнообразные физиологические, биохимические, биофизические, морфологические и другие методы исследования.

    Большое значение имеет изучение эффективности веществ при соответствующих патологических состояниях (экспериментальная фармакотерапия). Так, лечебное действие противомикробных веществ испытывают на животных, зараженных возбудителями определенных инфекций, противобластомные средства - на животных с экспериментальными и спонтанными опухолями. Кроме того, желательно располагать сведениями об особенностях действия веществ на фоне тех патологических состояний, при которых они могут быть использованы (например, при атеросклерозе, инфаркте миокарда, воспалении). Это направление, как уже отмечалось, получило название «патологической фармакологии». К сожалению, существующие экспериментальные модели редко полностью соответствуют тому, что наблюдается в клинике. Тем не менее они в какой-то мере имитируют условия, в которых назначают лекарственные средства, и тем самым приближают экспериментальную фармакологию к практической медицине.

    Результаты исследования веществ, перспективных в качестве лекарственных препаратов, передают в Фармакологический комитет МЗ РФ, в который входят эксперты разных специальностей (в основном фармакологи и клиницисты). Если Фармакологический комитет считает проведенные экспериментальные исследования исчерпывающими, предлагаемое соединение передают в клиники, имеющие необходимый опыт исследования лекарственных веществ. Это очень важный этап, так как решающее слово в оценке новых лекарственных средств принадлежит клиницистам. Большая роль в этих исследованиях отводится клиническим фармакологам, основной задачей которых являются клиническое изучение фармакокинетики и фармакодинамики лекарственных веществ, в том числе новых препаратов, и разработка на этой основе наиболее эффективных и безвредных методов их применения.

    Клинические исследования новых препаратов

    При клиническом испытании новых лекарственных средств следует исходить из ряда принципов (табл. I.3). Прежде всего их необходимо исследовать на значительном контингенте больных. Во многих странах этому часто предшествует испытание на здоровых (добровольцах). Очень важно, чтобы каждое новое вещество сравнивалось с хорошо известными препаратами той же группы (например, опиоидные анальгетики - с морфином, сердечные гликозиды - со строфантином и гликозидами наперстянки). Новое лекарственное средство обязательно должно отличаться от имеющихся в лучшую сторону.

    Таблица I.3. Принципы клинического исследования новых лекарственных средств (их фармакотерапевтической эффективности, побочных и токсических эффектов)

    При клиническом испытании веществ необходимо использовать объективные методы, позволяющие количественно оценить наблюдаемые эффекты. Комплексное исследование с использованием большого набора адекватных методик - еще одно из требований, предъявляемых к клиническим испытаниям фармакологических веществ.

    В случаях, когда в эффективности веществ существенную роль может играть элемент суггестии (внушения), используют плацебо - лекарственные формы, которые по внешнему виду, запаху, вкусу и прочим свойствам имитируют принимаемый препарат, но не содержат лекарственного вещества (состоят лишь из индифферентных формообразующих веществ). При «слепом контроле» в неизвестной для больного последовательности чередуют лекарственное вещество и плацебо. Только лечащий врач знает, когда больной принимает плацебо. При «двойном слепом контроле» об этом информировано третье лицо (заведующий отделением или другой врач). Такой принцип исследования веществ позволяет особенно объективно оценить их действие, так как при ряде патологических состояний (например, при некоторых болях) плацебо может давать положительный эффект у значительной части больных.

    Достоверность данных, полученных разными методами, должна быть подтверждена статистически.

    Важным элементом клинического исследования новых препаратов является соблюдение этических принципов. Например, необходимо согласие пациентов на включение их в определенную программу изучения нового лекарственного средства. Нельзя проводить испытания на детях, беременных женщинах, пациентах с психическими заболеваниями. Применение плацебо исключено, если заболевание угрожает жизни. Однако решать эти вопросы не всегда просто, так как в интересах больных иногда приходится идти на определенный риск. Для решения этих задач существуют специальные этические комитеты, которые рассматривают соответствующие аспекты при проведении испытаний новых лекарственных средств.

    Фазы клинических испытаний новых препаратов

    В большинстве стран клиническое испытание новых лекарственных веществ обычно проходит 4 фазы.

    1- я фаза . Проводится на небольшой группе здоровых добровольцев. Устанавливаются оптимальные дозировки, которые вызывают желаемый эффект. Целесообразны также фармакокинетические исследования, касающиеся всасывания веществ, периода их «полужизни», метаболизма. Рекомендуется, чтобы такие исследования выполняли клинические фармакологи.

    2- я фаза . Проводится на небольшом количестве больных (обычно до 100-200) с заболеванием, для лечения которого предлагается данный препарат. Детально исследуются фармакодинамика (включая плацебо) и фармакокинетика веществ, регистрируются возникающие побочные эффекты. Эту фазу апробации рекомендуется проводить в специализированных клинических центрах.

    3-я фаза . Клиническое (рандомизированное контролируемое) испытание на большом контингенте больных (до нескольких тысяч). Подробно изучаются эффективность (включая «двойной слепой контроль») и безопасность веществ. Специальное внимание обращают на побочные эффекты, в том числе аллергические реакции, и токсичность препарата. Проводится сопоставление с другими препаратами этой группы. Если результаты проведенного исследования положительные, материалы представляются в официальную организацию, которая дает разрешение на регистрацию и выпуск препарата для практического применения. В нашей стране это Фармакологический комитет МЗ РФ, решения которого утверждаются министром здравоохранения.

    4-я фаза . Широкое исследование препарата на максимально большом количестве больных. Наиболее важны данные о побочных эффектах и токсичности, которые требуют особенно длительного, тщательного и масштабного наблюдения. Кроме того, оцениваются отдаленные результаты лечения. Полученные данные оформляются в виде специального отчета, который направляется в ту организацию, которая давала разрешение на выпуск препарата. Эти сведения важны для дальнейшей судьбы препарата (его применения в широкой медицинской практике).

    Смысл последовательного проведения испытаний от 1-й к 4-й фазе заключается в постепенном расширении объема исследований, что позволяет уменьшить риск возможного отрицательного воздействия препарата на больного и более тщательно определить показания и противопоказания к его применению.

    В ряде случаев для получения более исчерпывающей информации о новом препарате прибегают к многоцентровым международным исследованиям.

    Качество препаратов, выпускаемых химико-фармацевтической промышленностью, обычно оценивают с помощью химических и физико-химических методов, указанных в Государственной фармакопее. В отдельных случаях, если строение действующих веществ неизвестно или химические методики недостаточно чувствительны, прибегают к биологической стандартизации. Имеется в виду определение активности лекарственных средств на биологических объектах (по наиболее типичным эффектам). Таким путем оценивают препараты ряда гормонов, сердечных гликозидов и др. Выражается активность в условных единицах действия (ЕД). Для сравнения используют стандарт, имеющий постоянную активность. Методы биологической стандартизации и вещества, для которых они обязательны, указаны в Государственной фармакопее.