Главная · Сон · Построить плоскость перпендикулярную к прямой. Прямых и плоскостей

Построить плоскость перпендикулярную к прямой. Прямых и плоскостей

Из геометрии известно, что прямая параллельна плоскости, если она параллельна какой-либо прямой, принадлежащей плоскости. Пусть требуется (рис. 126) через точку D провести прямую, параллельную плоскости треугольника ABC. В плоскости треугольника лежат все три его стороны. Линию DE проводим так, чтобы она оказалась параллельной одной из сторон треугольника, например стороне АВ. Для этого, как известно, необходимо, чтобы было выдержано следующее условие: D 2 Е 2 ||А 2 В 2 и D 1 E 1 ||A 1 B 1 . Если требуется через точку D провести горизонталь, параллельную плоскости ABC, то предварительно в плоскости треугольника строят проекции горизонтали AF, а затем через точку проводят требуемую горизонталь DG||AF.

TBegin-->TEnd-->

Прежде чем рассматривать прямые, перпендикулярные плоскости, надо ознакомиться с проецированием прямого угла. Оказывается, что прямой угол проецируется без искажения, если одна его сторона параллельна данной плоскости, а другая не перпендикулярна ей (рис. 127, а). Докажем эту теорему; для этого изобразим прямой угол, составленный прямой а и горизонталью h, и его горизонтальную проекцию h 1 Хa 1 . Обратим внимание на плоскость а, она горизонтально-проецирующая, так как проходит через горизонтально-проецирующую прямую АА 1 . Сторона h угла по заданию параллельна плоскости П 1 и перпендикулярна прямой а. Одновременно прямая h перпендикулярна линии АА 1 , также принадлежащей плоскости а; значит, она перпендикулярна и самой плоскости а. Горизонтальная проекция h 1 параллельна горизонтали h, следовательно она тоже перпендикулярна плоскости а. Но тогда она перпендикулярна и прямой а 1 , принадлежащей этой плоскости. Итак, h 1 _|_a 1 , т. е. прямой угол спроецировался на плоскость без искажения, что и требовалось доказать.

На комплексном чертеже (рис. 127, б) горизонтальные проекции прямых составят прямой угол h1_|_ а1, фронтальные проекции h 2 и а 2 в данном случае образуют тупой угол. На фронтальную плоскость проекций П3 прямой угол спроецируется в виде прямого угла в том случае, когда одна из его сторон / будет являться фронталью.

TBegin-->
TEnd-->

Из геометрии известно, что прямая перпендикулярна плоскости, если она перпендикулярна двум прямым, принадлежащим этой плоскости. Такими прямыми могут быть выбраны горизонталь и фронталь плоскости. Если прямая перпендикулярна плоскости, то горизонтальная проекция прямой перпендикулярна горизонтальной проекции горизонтали, а фронтальная проекция - фронтальной проекции фронтали данной плоскости. Применим это положение для того, чтобы восставить перпендикуляр к плоскости треугольника ABC (рис. 128, а). Через точку А 2 A 1 проведем горизонталь h 2 h 1 , через точку С 2 С 1 проведем фронталь f 1 f 2 ; эти прямые пересекутся между собой в точке N 2 N 1 . Проекции перпендикуляра MN должны пройти: M 2 N 2 _|_ f 2 . M 1 N 1 _|_ h 1 Зная направление соответствующих проекций горизонтали и фронтали, можно провести проекции перпендикуляра из любой точки плоскости ABC. Решение упрощается, если плоскость задана следами kxl (рис. 128, б).

След k является нулевой фронталью, а след l - нулевой горизонталью. Ими можно воспользоваться для построения проекций перпендикуляра MN; фронтальная проекция M 2 N 2 перпендикуляра должна быть перпендикулярна фронтальной проекции k 2 фронтального следа плоскости k, горизонтальная проекция M 1 N 1 перпендикуляра должна быть перпендикулярна горизонтальной проекции l 1 горизонтального следа l плоскости. Точка N выбрана нами на фронтальном следе k; ее можно было взять на горизонтальном следе l или в другом месте плоскости.

rn
Для примера решим две задачи.

Задача 1 . Определить проекции расстояния от точки А до плоскости треугольника BCD.

Как известно, расстояние от точки до плоскости измеряется длиной перпендикуляра, опущенного из точки на эту плоскость. Для того чтобы опустить перпендикуляр, надо провести горизонталь и фронталь плоскости (рис. 129). Горизонталью h плоскости в этом примере является сторона треугольника BD, так как фронтальная ее проекция горизонтальна (перпендикулярна линиям связи). Остается провести фронталь BE (f); ее горизонтальная проекция B 1 E 1 должна быть параллельна воображаемой оси проекций х 12 ; фронтальную проекцию строим с помощью точки Е. Из фронтальной проекции А 3 точки А опускаем перпендикуляр на фронтальную проекцию В 2 Е 2 фронтали BE, а из горизонтальной проекции А 1 - на горизонтальную проекцию B 1 D 1 горизонтали BD. Теперь надо найти основание перпендикуляра - точку О. Для этого проводим горизонтально-проецирующую плоскость сигма _|_ П 1 находим линию пересечения MN, фронтальную проекцию O 2 точки О, а по ней и горизонтальную проекцию О 1 .

Задача решена: A 2 O 2 и А1O1 - проекции искомого расстояния. Отрезок АО видимый при проецировании на плоскости П2 и П1.

TBegin-->TEnd-->

Задача 2 . Через точку А провести плоскость р, перпендикулярную к плоскости a (BCD).

Из геометрии известно, что если плоскость проходит через прямую, которая перпендикулярна другой плоскости, то такие плоскости перпендикулярны. Воспользуемся предыдущим чертежом, на котором первая часть новой задачи решена - проведен перпендикуляр АО=а (рис. 130). Теперь достаточно провести через точку А любую прямую b. При этом образуется плоскость b_|_ а. Построенная плоскость для наглядности оттенена с помощью точек. Как видно, эта задача имеет множество решений.

ПОСТРОЕНИЕ ВЗАИМНО ПЕРПЕНДИКУЛЯРНЫХ ПРЯМОЙ И ПЛОСКОСТИ

Из всех возможных положений прямой, пересекающей плоскость, отметим случай, когда прямая перпендикулярна к плоскости, и рассмотрим свойства проекций такой прямой.

На рис. 185 задана плоскость, определяемая двумя пересекающимися прямыми AN и AM, причем AN является горизонталью, а AM - фронталью этой плоскости. Прямая АВ, изображенная на том же чертеже, перпендикулярна к AN и к AM и, следовательно, перпендикулярна к определяемой ими плоскости.

Перпендикуляр к плоскости перпендикулярен к любой прямой, проведенной в этой плоскости. Но чтобы при этом проекция перпендикуляра к плоскости общего положения оказалась перпендикулярной к одноименной проекции какой-либо прямой этой плоскости, прямая должна быть горизонталью, или фронталью, или профильной прямой плоскости. Поэтому, желая построить перпендикуляр к плоскости, берут в общем случае две такие прямые (например, горизонталь и фронталь, как это показано на рис. 185).

Итак, у перпендикуляра к плоскости его горизонтальная проекция перпендикулярна к горизонтальной проекции горизонтали, фронтальная проекция перпендикулярна к фронтальной проекции фронтали, профильная проекция перпендикулярна к профильной проекции профильной прямой этой плоскости.

Очевидно, в случае, когда плоскость выражена следами (рис. 186), мы получаем следующий вывод: если прямая перпендикулярна к плоскости, то горизонтальная проекция этой прямой перпендикулярна к горизонтальному следу плоскости, а фронтальная проекция перпендикулярна к фронтальному следу плоскости.

Итак, если в системе π 1 п 2 горизонтальная проекция прямой перпендикулярна к горизонтальному следу и фронтальная проекция прямой перпендикулярна к фронтальному следу плоскости, то в случае плоскостей общего положения (рис. 186), а также горизонтально и фронтально-проецирующих прямая перпендикулярна к плоскости. Но для профильно-проецирующей плоскости может оказаться, что прямая к этой плоскости не перпендикулярна, хотя проекции прямой соответственно перпендикулярны к горизонтальному и фронтальному следам плоскости. Поэтому в случае профильно-проецирующей плоскости надо рассмотреть также взаимное положение профильной проекции прямой и профильного следа данной плоскости и лишь после этого установить, будут ли перпендикулярны между собой данные прямая и плоскость.

Очевидно (рис. 187), горизонтальная проекция перпендикуляра к плоскости сливается с горизонтальной проекцией линии ската, проведенной в плоскости через основание перпендикуляра.

На рис. 186 из точки А проведен перпендикуляр к пл. a (А"С" ⊥ f" 0a , А"С" ⊥ h" 0a) и показано построение точки Е, в которой перпендикуляр АС пересекает пл. а. Построение выполнено с помощью горизонтально-проецирующей пл. β, проведенной через перпендикуляр АЕ.

На рис. 188 показано построение перпендикуляра к плоскости, определяемой треугольником АВС. Перпендикуляр проведен через точку А.

Так как фронтальная проекция перпендикуляра к плоскости должна быть перпендикулярна к фронтальной проекции фронтали плоскости, а его горизонтальная проекция перпендикулярна к горизонтальной проекции горизонтали, то в плоскости через точку А проведены фронталь с проекциями A"D" и A"D" и горизонталь А"Е", А"Е". Конечно, эти прямые не обязательно проводить именно через точку А.

Далее проведены проекции перпендикуляра: M"N" ⊥ A"D", M"N" ⊥ А"Е". Почему проекции на рис. 188 на участках A"N" и А"М" показаны штриховыми линиями? Потому, что здесь рассматривается плоскость, заданная треугольником АВС, а не только этот треугольник: перпендикуляр находится частично перед плоскостью, частично за ней.

На рис. 189 и 190 показано построение плоскости, проходящей через точку А перпендикулярно к прямой ВС. На рис. 189 плоскость выражена следами. Построение начато с проведения через точку А горизонтали искомой плоскости: так как горизонтальный след плоскости должен быть перпендикулярен к В"С" то и горизонтальная проекция горизонтали должна быть перпендикулярна к В"С". Поэтому A"N" ⊥ В"С. Проекция A"N" || оси х, как это должно быть у горизонтали. Затем проведен через точку N" (N" - фронтальная проекция фронтальною следа горизонтали AN) след f" 0a ⊥ В"С", получена точка Х a и проведен след h" 0a || A"N" (h" 0a ⊥ В"С").

На рис. 190 плоскость определена ее фронталью AM и горизонталью AN. Эти прямые перпендикулярны к ВС (А"М"" ⊥ В"С", A"N" ⊥ В"С); определяемая ими плоскость перпендикулярна к ВС.

Так как перпендикуляр к плоскости перпендикулярен к каждой прямой, проведенной в этой плоскости, то, научившись проводить плоскость перпендикулярно к прямой, можно воспользоваться этим для проведения перпендикуляра из некоторой точки А к прямой общего положения ВС. Очевидно, можно наметить следующий план построения проекций искомой прямой:

1) через точку А провести плоскость (назовем ее ϒ), перпендикулярную к ВС;

2) определить точку К пересечения прямой ВС с пл. ϒ;

3) соединить точки А и К отрезком прямой линии.

Прямые АК и ВС взаимно перпендикулярны.

Пример построения дан на рис. 191. Через точку А проведена плоскость (ϒ), перпендикулярная к ВС. Это сделано при помощи фронтали, фронтальная проекция A"F" которой проведена перпендикулярно к фронтальной проекции В"С" и горизонтали, горизонтальная проекция которой перпендикулярна к В"С".

Затем найдена точка К, в которой прямая ВС пересекает пл. ϒ. Для этого через прямую ВС проведена горизонтально-проецируюшая плоскость β (на чертеже она задана только горизонтальным следом β"). Пл. β пересекает пл. ϒ по прямой с проекциями 1"2‘ и 1"2". В пересечении этой прямой с прямой ВС получается точка К. Прямая АК является искомым перпендикуляром к ВС. Действительно, прямая АК пересекает прямую ВС и находится в пл. ϒ, перпендикулярной к прямой ВС; следовательно, АК ⊥ ВС.

На рис. 192 изображены плоскость общего положения а, проходящая через точку А, и перпендикуляр AM к этой плоркости, продолженный до пересечения с пл. п 1 , в точке В".

Угол ф 1 между пл. а и пл. п 1 и угол ф между прямой AM и пл. п 1 являются острыми углами прямоугольного треугольника В"АМ" и, следовательно, ф 1 +ф = 90°. Аналогично, если пл. а составляет с пл. п 2 угол σ 2 , а прямая AM, перпендикулярная к а, составляет с пл. п 2 угол σ, то σ 2 + σ = 90°. Из этого, прежде всего, следует, что плоскость общею положения, которая должна составлять с пл. п 1 угол ф 1 а с пл. п 2 угол σ 2 , может быть построена, лишь если 180° > Ф 1 + σ2 > 90°.

Действительно, складывая почленно Ф 1 + Ф = 90° и σ 2 + σ = 90°, получим Ф 1 + σ 2 + Ф + σ = 180°, т. е. Ф 1 + σ 2 < 180, а так как Ф + σ < 90 , то Ф 1 + σ 2 > 90°. Если взять Ф 1 + σ 2 =90°, то получится профильно-проецирующая плоскость, а если взять Ф 1 + σ 2 = 180°, то получится профильная плоскость, т. е. в обоих этих случаях плоскость не общего положения, а частного.

ПОСТРОЕНИЕ ВЗАИМНО ПЕРПЕНДИКУЛЯРНЫХ ПЛОСКОСТЕЙ

Построение плоскости β, перпендикулярной к плоскости a, может быть произведено двумя путями: 1) пл. β проводится через прямую, перпендикулярную к пл. а; 2) пл. β проводится перпендикулярно к прямой, лежащей в пл. а или параллельной этой плоскости. Для получения единственного решения требуются дополнительные условия.

На рис. 193 показано построение плоскости, перпендикулярной к плоскости, заданной треугольником CDE. Дополнительным условием здесь служит то, что искомая плоскость должна проходить через прямую А В. Следовательно, искомая плоскость определяется прямой АВ и перпендикуляром к плоскости треугольника. Для проведения этого перпендикуляра к пл. CDE в ней взяты фронталь CN и горизонталь СМ: если B"F" ⊥ C“N" и B"F"⊥C"M", то BF⊥ пл. CDE.

Образованная пересекающимися прямыми АВ и BF плоскость перпендикулярна к пл. СОЕ, так как проходит через перпендикуляр к этой плоскости. На рис. 194 горизонтально-проецирующая плоскость β проходит через точку К перпендикулярно к плоскости, заданной треугольником АВС. Здесь дополнительным условием являлась перпендикулярность искомой плоскости сразу к двум плоскостям: к пл. АВС и к пл. п 1 . Поэтому и ответом служит горизонтально-проецирующая плоскость. А так как она проведена перпендикулярно к горизонтали AD, т. е. к прямой, принадлежащей пл. АВС, то пл. β перпендикулярна к пл. АВС.

Может ли перпендикулярность одноименных следов плоскостей служить признаком перпендикулярности самих плоскостей?

К очевидным случаям, когда это так, относится взаимная перпендикулярность двух горизонтально-проецирующих плоскостей, у которых горизонтальные следы взаимно перпендикулярны. Также это имеет место при взаимной перпендикулярности фронтальных следов фронтально-проецирующих плоскостей; эти плоскости взаимно перпендикулярны.

Рассмотрим (рис. 195) горизонтально-проецирующую плоскость β, перпендикулярную к плоскости общего положения а.

Если пл. β перпендикулярна к пл. л, п 1 пл. а, то β⊥h" 0a как к линии пересечения пл. а и пл. п 1 . Отсюда h" 0a ⊥ β и, следовательно, h" 0a ⊥ β , как к одной из прямых в пл. β.

Итак, перпендикулярность горизонтальных следов плоскости общего положения и горизонтально-проецирующей соответствует взаимной перпендикулярности этих плоскостей.

Очевидно, перпендикулярность фронтальных следов фронтально-проецирующей плоскости и плоскости общего положения также соответствует взаимной перпендикулярности этих плоскостей.

Но если одноименные следы двух плоскостей общего положения взаимно перпендикулярны, то самые плоскости не перпендикулярны между собой, так как здесь не соблюдается ни одно из условий, изложенных в начале этого параграфа.

В заключение рассмотрим рис. 196. Здесь имеет место случай взаимной перпендикулярности одноименных следов в обеих их парах и перпендикулярности самих плоскостей: обе плоскости особого (частного) положения - профильная ϒ и профильно-проецирующая а.

Построение плоскости р, перпендикулярной к плоскости а, может быть произведено двумя путями: I) плоскость р проводится через прямую, перпендикулярную к плоскости а; 2) плоскость р проводится перпендикулярно к прямой, лежащей в плоскости а или параллельной этой плоскости. Для получения единственного решения требуются дополнительные условия. На рисунке 148 показано построение плоскости, перпендикулярной к плоскости, заданной треугольником CDE. Дополнительным условием здесь служит то, что искомая плоскость должна проходить через прямую АВ. Следовательно, искомая плоскость определяется прямой АВ и перпендикуляром к плоскости треугольника. Для проведения этого перпендикуляра к плоскости CDE в ней взяты фронтам CN и горизонталь СМ: если В"F" ± C"N" и В"Г 1 СМ\ то BFX плоскости CDF. Образованная пересекающимися прямыми АВ и BF плоскость перпендикулярна к плоскости CDE, гак как проходит через перпендикуляр к этой плоскости. Может ли перпендикулярность одноименных следов плоскостей служить признаком перпендикулярности самих плоскостей? К очевидным случаям, когда это так, относится также взаимная перпендикулярность двух горизонтально-проецирующих плоскостей, у которых горизонтальные следы взаимно перпендикулярны. Также это имеет место при взаимной перпендикулярности фронтальных следов фронтально-проецирующих плоскостей; эти плоскости взаимно перпендикулярны. Рассмотрим (рисунок 149) горизонтально-проецирующую плоскость р, перпендикулярную к плоскости общего положения а. Если плоскость р перпендикулярна к плоскости я, и к плоскости а, то р 1как к линии пересечения плоскости а и плоскости я,. Отсюда h"0a 1р и, следовательно, h"0u 1 р", как к одной из прямых в плоскости р. Итак, перпендикулярность горизонтальных следов плоскости общего положения и горизонтально-проецирующей соответствует взаимной перпендикулярности этих плоскостей. Очевидно, перпендикулярность фронтальных следов фронтально-проецирующей плоскости и плоскости общего положения также соответствует взаимной перпендикулярности этих плоскостей. Но если одноименные следы двух гыоскостей общего положения взаимно перпендикулярны, то сами плоскости не перпендикулярны между собой, так как здссь не соблюдается ни одно из условий, изложенных в начале этою параграфа. Вопросы для самопроверки 1. Как задается плоскость ма чертеже? 2. Что такое след плоскости на плоскости проекций? 3. Где располагаются фронтальная проекция горизонтального следа и горизонтальная проекция фронтального следа плоскости? Л. Как определяется на чертеже, принадлежит ли прямая данной плоскости? 5. Как построить на чертеже точку, принадлежащую данной плоскости? 6. Как располагается в системе nt, я? и 713 плоскость общего положения? 7. Что такое фронтально-проецирующая, горизонтально-проецирующая и про-фильно-проецирующая плоскости? 8. Как изображается на чертеже фрошально-проецирующая плоскость, проведенная через прямую общего положения? 9. Какое взаимное положение могут занимать две плоскости? 10. Каков признак параллельности двух плоскостей? 11. Как взаимно располагаются одноименные следы двух параллельных между собой плоскостей? 12. Как установить взаимное положение прямой и плоскости? 13. В чем заключается общий способ построения линии пересечения двух плоскостей? 14. В чем заключается в общем случае способ построения точки пересечения прямой с плоскостью? 15. Как определить «видимость» при пересечении прямой с плоскостью? 16. Чем определяется взаимная параллельность двук плоскостей? 17. Как провести через точку плоскость, параллельную заданной плоскости? 18. Как располагается проекция перпендикуляра к плоскости? 19. Как построить взаимно перпендикулярные плоскости?

В рамках этой темы необходимо уметь:

  • 1. Задавать плоскость, перпендикулярную к прямой.
  • 2. Задавать прямую, перпендикулярную к плоскости.

При решении этих взаимосвязанных задач важно понимать, как должны быть направлены проекции перпендикуляра по отношению к проекциям плоскости. Для уяснения этого решим задачи А и Б.

Задача А

Условие. Через точку А, взятую на прямой гп, провести плоскость, перпендикулярную к этой прямой.

Решение. Известно, что плоскость перпендикулярна прямой, сели две прямые, расположенные в этой плоскости, перпендикулярны заданной прямой.

Поэтому в нашем случае через точку А достаточно провести две прямые, каждая из которых была бы перпендикулярна т. Тогда эти прямые в паре определят искомую плоскость.

Пусть одной из прямых, определяющих эту плоскость, станет горизонталь. Ее фронтальная проекция 1ъ пройдет горизонтально (рис. 4.7), а горизонтальная проекция h| - под прямым углом к m 1 (на основании теоремы о проекциях прямого угла).

Второй прямой, определяющей искомую плоскость, будет фронталь. Ес горизонтальная проекция f| пройдет горизонтально.

а фронтальная проекция f2 - иод прямым углом к mi (на основании той же теоремы).

Рис. 4.7

Таким образом, задача решена. Анализируя ее, мы можем заметить, что по отношению к построенной плоскости (f х h) заданная прямая m является перпендикуляром. Отсюда следует важный практический вывод:

горизонтальная проекция перпендикуляра к плоскости должна проходить под прямым углом к горизонтальной проекции горизонтали, а фронтальная проекция - под прямым углом к фронтальной проекции фронтали.

Задача Б

Условия. Опустить перпендикуляр из точки В на плоскость DEF (с определением его видимости но отношению к плоскости).

Рис. 4.8а - графические условия задачи

Рис. 4.86

Рис. 4.8в - определение основания и натуральной величины перпендикуляра

Решение. Вначале вычертим проекции DEF и В (рис. 4.8а).

Приступив к решению задачи, выделим в ней три

характерных этапа:

  • 1. Построение направлений для проекций перпендикуляра.
  • 2. Построение основания перпендикуляра (точки его пересечения с плоскостью).
  • 3. Определение натуральной величины перпендикуляра.

Выполним эти построения. Сначала наметим направление

проекций перпендикуляра. Для этого предварительно в плоскости DEF нужно провести горизонталь h и фронталь f, которые являются ориентирами для его проекций.

Теперь найдем основание перпендикуляра как точку пересечения полученной прямой с плоскостью DEF. Эта задача нам уже знакома (см. п. 3.3.4). В рассмотренном примере искомая точка К лежит за пределами треугольника, ограничивающего плоскость (рис. 4.8в). Она расположена на прямой 2-3, которая, по построению, принадлежит плоскости DEF. Значит, ей принадлежит и точка К. Если проекции перпендикуляра частично или полностью заслоняются проекциями треугольника DEF, то дополнительно необходимо определить видимость перпендикуляра но отношению к плоскости.

Натуральная величина перпендикуляра ВК может быть найдена любым из методов, рассмотренных ранее в и. 2.2. На рисунке 4.8в для этой цели использован метод прямоугольного треугольника.

Отметим, что данная задача зачастую формулируется как определение расстояния от точки В до плоскости треугольника DEF.

Вербальная форма Графическая форма
1. Известно, что для построения прямой, перпендикулярной плоскости, необходимо построить горизонталь и фронталь в плоскости. а) Заметим, что построение перпендикуляра упрощается, так как стороны плоскости Q(D АВС) являются прямыми уровня: АВ (А 1 В 1 ; А 2 В 2) – фронталь АС (А 1 С 1 ; А 2 С 2) – горизонталь. б) Возьмем на прямой l произвольную точку К
2. Через точку К, которая принадлежит прямой l, проводим прямую n ^ Q, т.е. n 1 ^ A 1 C 1 и n 2 ^ A 2 В 2 . Искомая плоскость будет определяться двумя пересекающимися прямыми, одна из которых задана – l , а другая – n является перпендикулярной к заданной плоскости: P(l n)^ Q (D ABC)

Конец работы -

Эта тема принадлежит разделу:

Начертательная геометрия - Т.В. Хрусталева

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ
Рекомендовано Дальневосточным региональным учебно-методическим центром в качестве учебного пособия для студентов специальности 210700 “Автоматика, телемеханика и связь на жел

Геометрические образы
1. Плоскость проекций: p – произвольная; p1 – горизонтальная; p2 – фронтальная; p3 – профильная; S – центр проец

Обозначения теоретико-множественные
Сущность метода проецирования заключается в том, что проекция Аp некоторого геометрического обр

Проецирование центральное
Центральным называется проецирование, при котором все проецирующие лучи выходят из одной точки S, называемой центром проецирования. На рис. 1.3 дан пример центрального проецирования, где p – плоско

Проецирование параллельное
Параллельным называется проецирование, при котором все проецирующие лучи между собой параллельны. Параллельные проекции могут быть косоугольными (рис.1.7) и прямоугольными (рис. 1.8).

Свойства ортогональных проекций
1. Проекция точки есть точка (рис. 1.9). Рис. 1.9 2. Проекция прямой в общем

Обратимость чертежа. Метод Монжа
Рассмотренный в § 2 и § 3 способ проецирования на одну плоскость проекций дает возможность решить прямую задачу (имея предмет, можно найти его проекцию), но не позволяет решить обратную задачу (име

Система двух взаимно перпендикулярных плоскостей
Обратимость чертежа, как об этом говорилось ранее, т. е. однозначное определение положения точки в пространстве по ее проекциям, может быть обеспечена проецированием на две взаимно перпендикулярные

Система трех взаимно перпендикулярных плоскостей
На практике исследования и построения изображений система двух взаимно перпендикулярных плоскостей не всегда дает возможность однозначного решения. Так, например, если переместить точку А вдоль оси

Комплексный чертеж и наглядное изображение точки в I–IV октантах
Рассмотрим пример построения точек А, В, С, D в различных октантах (табл. 2.4). Таблица 2.4 Октант Наглядное изображение

Общие положения
Линия – это одномерный геометрический образ, имеющий длину; множество всех последовательных положений движущейся точки. По определению Эвклида: "Линия же – длина без ширины". Пол

Прямые уровня
Определение Наглядное изображение Комплексный чертеж Горизонталью называют всякую линию, параллельную горизонтальной

Проецирующие прямые
Определение Наглядное изображение Комплексный чертеж Горизонтально проецирующей прямой называют прямую, перпендикулярную

Построение третьей проекции отрезка по двум заданным
В нашем примере мы будем рассматривать построение прямой общего положения в первой четверти (табл. 3.3). Таблица 3.3 Вербальная форма

Способ прямоугольного треугольника. Определение натуральной величины отрезка прямой линии и углов наклона прямой к плоскостям проекций
Построение проекций отрезка прямой общего и частного положения позволяет решать не только позиционные задачи (расположение относительно плоскостей проекций), но и метрические – определение длины от

Определение натуральной величины отрезка прямой общего положения
Для определения натуральной величины отрезка прямой линии общего положения по ее проекциям применяют метод прямоугольного треугольника. Рассмотрим последовательность этого положения (табл.

Общие положения
Две прямые в пространстве могут иметь различное расположение: пересекаться (лежать в одной плоскости). Частный случай пересечения – под прямым углом; могут быть параллельны

Определение видимости прямых относительно плоскостей проекций
Для определения видимости прямых относительно плоскостей проекции используются конкурирующие точки. Рассмотрим комплексный чертеж скрещивающихся прямых а и b (рис. 4.1 и рис. 4.2). Определим, какая

Алгоритм построения прямых пересекающихся
Вербальная форма Графическая форма 1. Через точку К провести прямую h|| p1 и пересекающую прямую а

Плоскости проецирующие
Определение Наглядное изображение Комплексный чертеж Горизонтально-проецирующей плоскостью называют плоскость, перпендику

Плоскости уровня
Характеристика Наглядное изображение Эпюр Фронтальнаяплоскость – это плоскость, параллельная плоскости p2. Эта

Прямые особого положения в плоскости
Прямыми особого положения в плоскости являются горизонталь h, фронталь f и линии наибольшего наклона к плоскостям проекций. Рассмотрим графическое изображение этих линий (табл. 5.6). Та

Алгоритм построения фронтали
Вербальная форма Графическая форма Дана плоскость a (a|| b), следовательно, a1 || b1; a2

Алгоритм построения второй проекции точки К
Вербальная форма Графическая форма Плоскость a – задана плоской фигурой a (D АВС), K2 – фронтальная проекция точки K

Алгоритм построения плоскости, параллельной данной
Вербальная форма Графическая форма 1. Для решения задачи в данной плоскости Р(D АBC) берутся любые пересекающиеся прямые. Например, АВ

Плоскости пересекающиеся
Две плоскости пересекаются по прямой линии. Для построения линии их пересечения необходимо найти две точки, принадлежащие этой линии. Задача упрощается, если одна из пересекающихся плоскостей заним

Алгоритм построения прямой, параллельной плоскости
Вербальная форма Графическая форма 1. Построим в плоскости Р(D АВС) прямую А1, которая принадлежит плоскости Р

Алгоритм пересечения прямой линии с плоскостью общего положения
Вербальная форма Графическая форма 1. Чтобы построить точку пересечения прямой l с плоскостью

Алгоритм построения перпендикуляра к плоскости
Вербальная форма Графическая форма 1. Для того чтобы построить перпендикуляр к плоскости Р(D АВС) через точку D, необходимо сначала по

К главе 3
1. Построить проекции прямой АВ (рис. 3), если она: а) параллельна p1; б) параллельна p2; в) параллельна ОХ; г) перпендикулярна p1

К главе 5
В плоскости, заданной двумя параллельными прямыми, построить фронталь на расстоянии 15 мм от p1 (рис. 9):

К главе 6
1. Дана плоскость Р(а|| b) и фронтальная проекция m2 прямой m, проходящей через точку D. Построить горизонтальную проекцию прямой m1 так, чтобы прямая m была параллельна плоск

Тесты к главе 3
Выберите соответствие обозначения отрезка АВ его изображению (рис. 6): 1. АВ || p 1 2. АВ || p 2 3. АВ ^ p 1 4.

Тесты к главе 6
1. На каком из чертежей (рис. 12) плоскость S (D АВС) параллельна плоскости Р(m C n).

Рекомендуемый библиографический список
1. ГОСТ 2.001-70. Общие положения // В сб. Единая система конструкторской документации. Основные положения. – М.: Изд-во стандартов, 1984. – С. 3–5. 2. ГОСТ 2.104-68. Основные надписи // В