Главная · Вредные привычки · Перспективы физики элементарных частиц. Большой адронный коллайдер (Large Hadron Collider) Разгон частиц в адронном коллайдере

Перспективы физики элементарных частиц. Большой адронный коллайдер (Large Hadron Collider) Разгон частиц в адронном коллайдере

УСКОРИТЕЛЬ ЧАСТИЦ
установка, в которой с помощью электрических и магнитных полей получаются направленные пучки электронов, протонов, ионов и других заряженных частиц с энергией, значительно превышающей тепловую энергию. В процессе ускорения повышаются скорости частиц, причем нередко до значений, близких к скорости света. В настоящее время многочисленные малые ускорители применяются в медицине (радиационная терапия), а также в промышленности (например, для ионной имплантации в полупроводниках). Крупные же ускорители применяются главным образом в научных целях - для исследования субъядерных процессов и свойств элементарных частиц
(см. также ЧАСТИЦЫ ЭЛЕМЕНТАРНЫЕ). Согласно квантовой механике, пучок частиц, как и световой пучок, характеризуется определенной длиной волны. Чем больше энергия частиц, тем меньше эта длина волны. А чем меньше длина волны, тем меньше объекты, которые можно исследовать, но тем больше размеры ускорителей и тем они сложнее. Развитие исследований микромира требовало все большей энергии зондирующего пучка. Первыми источниками излучений высокой энергии служили природные радиоактивные вещества. Но они давали исследователям лишь ограниченный набор частиц, интенсивностей и энергий. В 1930-х годах ученые начали работать над созданием установок, которые могли бы давать более разнообразные пучки. В настоящее время существуют ускорители, позволяющие получать любые виды излучений с высокой энергией. Если, например, требуется рентгеновское или гамма-излучение, то ускорению подвергаются электроны, которые затем испускают фотоны в процессах тормозного или синхротронного излучения. Нейтроны генерируются при бомбардировке подходящей мишени интенсивным пучком протонов или дейтронов. Энергия ядерных частиц измеряется в электронвольтах (эВ). Электронвольт - это энергия, которую приобретает заряженная частица, несущая один элементарный заряд (заряд электрона), при перемещении в электрическом поле между двумя точками с разностью потенциалов в 1 В. (1 эВ УСКОРИТЕЛЬ ЧАСТИЦ 1,60219*10-19 Дж.) Ускорители позволяют получать энергии в диапазоне от тысяч до нескольких триллионов (10 12) электронвольт - на крупнейшем в мире ускорителе. Для обнаружения в эксперименте редких процессов необходимо повышать отношение сигнала к шуму. Для этого требуются все более интенсивные источники излучения. Передний край современной техники ускорителей определяется двумя основными параметрами - энергией и интенсивностью пучка частиц. В современных ускорителях используются многочисленные и разнообразные виды техники: высокочастотные генераторы, быстродействующая электроника и системы автоматического регулирования, сложные приборы диагностики и управления, сверхвысоковакуумная аппаратура, мощные прецизионные магниты (как "обычные", так и криогенные) и сложные системы юстировки и крепления.
ОСНОВНЫЕ ПРИНЦИПЫ
Основная схема ускорения частиц предусматривает три стадии:
1) формирование пучка и его инжекция, 2) ускорение пучка и 3) вывод пучка на мишень или осуществление соударения встречных пучков в самом ускорителе.
Формирование пучка и его инжекция. Исходным элементом любого ускорителя служит инжектор, в котором имеется источник направленного потока частиц с низкой энергией (электронов, протонов или других ионов) и высоковольтные электроды и магниты, выводящие пучок из источника и формирующие его. В источниках протонов первых ускорителей газообразный водород пропускался через область электрического разряда или вблизи раскаленной нити. В таких условиях атомы водорода теряют свои электроны и остаются одни ядра - протоны. Такой метод (и аналогичный с другими газами) в усовершенствованном виде по-прежнему применяется для получения пучков протонов (и тяжелых ионов). Источник формирует пучок частиц, который характеризуется средней начальной энергией, током пучка, его поперечными размерами и средней угловой расходимостью. Показателем качества инжектируемого пучка служит его эмиттанс, т.е. произведение радиуса пучка на его угловую расходимость. Чем меньше эмиттанс, тем выше качество конечного пучка частиц с высокой энергией. По аналогии с оптикой ток частиц, деленный на эмиттанс (что соответствует плотности частиц, деленной на угловую расходимость), называют яркостью пучка. Во многих приложениях современных ускорителей требуется максимально возможная яркость пучков.
Ускорение пучка. Пучок формируется в камерах или инжектируется в одну или несколько камер ускорителя, в которых электрическое поле повышает скорость, а следовательно, и энергию частиц. В первых, простейших ускорителях энергия частиц увеличивалась в сильном электростатическом поле, созданном внутри высоковакуумной камеры. Максимальная энергия, которую при этом удавалось достичь, определялась электрической прочностью изоляторов ускорителя. Во многих современных ускорителях в качестве инжекторов еще используются электростатические ускорители электронов и ионов (вплоть до ионов урана) с энергиями от 30 кэВ до 1 МэВ. Получение высокого напряжения и сегодня остается сложной технической проблемой. Его можно получать, заряжая группу конденсаторов, соединенных параллельно, а затем подключая их последовательно к последовательности ускорительных трубок. Таким способом в 1932 Дж.Кокрофт и Э.Уолтон получали напряжения до 1 МВ. Существенный практический недостаток этого способа в том, что на внешних элементах системы оказывается высокое напряжение, опасное для экспериментаторов. Иной способ получения высокого напряжения был изобретен в 1931 Р.Ван-де-Граафом. В генераторе Ван-де-Граафа (рис. 1) лента из диэлектрика переносит электрические заряды от источника напряжения, находящегося под потенциалом земли, к высоковольтному электроду, повышая тем самым его потенциал относительно земли. Однокаскадный генератор Ван-де-Граафа позволяет получать напряжения до 10 МВ. На многокаскадных высоковольтных ускорителях были получены протоны с энергиями до 30 МэВ.

Если требуется не непрерывный пучок, а короткий импульс частиц с высокой энергией, то можно воспользоваться тем, что кратковременно (менее микросекунды) изоляторы способны выдерживать гораздо более высокие напряжения. Импульсные диоды позволяют получать напряжения до 15 МВ на каскад в схемах с очень низким импендансом. Это позволяет получить токи пучка в несколько десятков килоампер, а не в десятки миллиампер, как на электростатических ускорителях. Обычный способ получения высокого напряжения основан на схеме импульсного генератора Маркса, в которой батарея конденсаторов сначала заряжается параллельно, а затем соединяется последовательно и разряжается через один разрядный промежуток. Высоковольтный импульс генератора поступает в длинную линию, которая формирует импульс, задавая его время нарастания. Линия нагружается электродами, ускоряющими пучок. При высокочастотном ускоряющем напряжении конструкция ускорителя выдерживает без пробоя гораздо более сильные электрические поля, чем при постоянном напряжении. Однако применение высокочастотных полей для ускорения частиц затрудняется тем, что знак поля быстро меняется и поле оказывается то ускоряющим, то замедляющим. В конце 1920-х были предложены два способа преодоления этой трудности, которые применяются теперь в большинстве ускорителей.
ЛИНЕЙНЫЕ УСКОРИТЕЛИ
Возможность применения высокочастотных электрических полей в длинных многокаскадных ускорителях основана на том, что такое поле изменяется не только во времени, но и в пространстве. В любой момент времени напряженность поля изменяется синусоидально в зависимости от положения в пространстве, т.е. распределение поля в пространстве имеет форму волны. А в любой точке пространства она изменяется синусоидально во времени. Поэтому максимумы поля перемещаются в пространстве с так называемой фазовой скоростью. Следовательно, частицы могут двигаться так, чтобы локальное поле все время их ускоряло. В линейных ускорительных системах высокочастотные поля были впервые применены в 1929, когда норвежский инженер Р.Видероэ осуществил ускорение ионов в короткой системе связанных высокочастотных резонаторов. Если резонаторы рассчитаны так, что фазовая скорость поля всегда равна скорости частиц, то в процессе своего движения в ускорителе пучок непрерывно ускоряется. Движение частиц в таком случае подобно скольжению серфера на гребне волны. При этом скорости протонов или ионов в процессе ускорения могут сильно увеличиваться. Соответственно этому должна увеличиваться и фазовая скорость волны vфаз. Если электроны могут инжектироваться в ускоритель со скоростью, близкой к скорости света с, то в таком режиме фазовая скорость практически постоянна: vфаз = c. Другой подход, позволяющий исключить влияние замедляющей фазы высокочастотного электрического поля, основан на использовании металлической конструкции, экранирующей пучок от поля в этот полупериод. Впервые такой способ был применен Э.Лоуренсом в циклотроне (см. ниже); он используется также в линейном ускорителе Альвареса. Последний представляет собой длинную вакуумную трубу, в которой расположен целый ряд металлических дрейфовых трубок. Каждая трубка последовательно соединена с высокочастотным генератором через длинную линию, вдоль которой со скоростью, близкой к скорости света, бежит волна ускоряющего напряжения (рис. 2). Таким образом, все трубки по очереди оказываются под высоким напряжением. Заряженная частица, вылетающая из инжектора в подходящий момент времени, ускоряется в направлении первой трубки, приобретая определенную энергию. Внутри этой трубки частица дрейфует - движется с постоянной скоростью. Если длина трубки правильно подобрана, то она выйдет из нее в тот момент, когда ускоряющее напряжение продвинулось на одну длину волны. При этом напряжение на второй трубке тоже будет ускоряющим и составляет сотни тысяч вольт. Такой процесс многократно повторяется, и на каждом этапе частица получает дополнительную энергию. Чтобы движение частиц было синхронно с изменением поля, соответственно увеличению их скорости должна увеличиваться длина трубок. В конце концов скорость частицы достигнет скорости, очень близкой к скорости света, и предельная длина трубок будет постоянной.



Пространственные изменения поля налагают ограничение на временную структуру пучка. Ускоряющее поле изменяется в пределах сгустка частиц любой конечной протяженности. Следовательно, протяженность сгустка частиц должна быть мала по сравнению с длиной волны ускоряющего высокочастотного поля. Иначе частицы будут по-разному ускоряться в пределах сгустка. Слишком большой разброс энергии в пучке не только увеличивает трудности фокусировки пучка из-за наличия хроматической аберрации у магнитных линз, но и ограничивает возможности применения пучка в конкретных задачах. Разброс энергий может также приводить к размытию сгустка частиц пучка в аксиальном направлении. Рассмотрим сгусток нерелятивистских ионов, движущихся с начальной скоростью v0. Продольные электрические силы, обусловленные пространственным зарядом, ускоряют головную часть пучка и замедляют хвостовую. Синхронизируя соответствующим образом движение сгустка с высокочастотным полем, можно добиться большего ускорения хвостовой части сгустка, чем головной. Таким согласованием фаз ускоряющего напряжения и пучка можно осуществить фазировку пучка - скомпенсировать дефазирующее влияние пространственного заряда и разброса по энергии. В результате в некотором интервале значений центральной фазы сгустка наблюдаются центрирование и осцилляции частиц относительно определенной фазы устойчивого движения. Это явление, называемое автофазировкой, чрезвычайно важно для линейных ускорителей ионов и современных циклических ускорителей электронов и ионов. К сожалению, автофазировка достигается ценой снижения коэффициента заполнения ускорителя до значений, намного меньших единицы. В процессе ускорения практически у всех пучков обнаруживается тенденция к увеличению радиуса по двум причинам: из-за взаимного электростатического отталкивания частиц и из-за разброса поперечных (тепловых) скоростей. Первая тенденция ослабевает с увеличением скорости пучка, поскольку магнитное поле, создаваемое током пучка, сжимает пучок и в случае релятивистских пучков почти компенсирует дефокусирующее влияние пространственного заряда в радиальном направлении. Поэтому данный эффект весьма важен в случае ускорителей ионов, но почти несуществен для электронных ускорителей, в которых пучок инжектируется с релятивистскими скоростями. Второй эффект, связанный с эмиттансом пучка, важен для всех ускорителей. Удержать частицы вблизи оси можно с помощью квадрупольных магнитов. Правда, одиночный квадрупольный магнит, фокусируя частицы в одной из плоскостей, в другой их дефокусирует. Но здесь помогает принцип "сильной фокусировки", открытый Э.Курантом, С.Ливингстоном и Х.Снайдером: система двух квадрупольных магнитов, разделенных пролетным промежутком, с чередованием плоскостей фокусировки и дефокусировки в конечном счете обеспечивает фокусировку во всех плоскостях. Дрейфовые трубки все еще используются в протонных линейных ускорителях, где энергия пучка увеличивается от нескольких мегаэлектронвольт примерно до 100 МэВ. В первых электронных линейных ускорителях типа ускорителя на 1 ГэВ, сооруженного в Стэнфордском университете (США), тоже использовались дрейфовые трубки постоянной длины, поскольку пучок инжектировался при энергии порядка 1 МэВ. В более современных электронных линейных ускорителях, примером самых крупных из которых может служить ускоритель на 50 ГэВ длиной 3,2 км, сооруженный в Стэнфордском центре линейных ускорителей, используется принцип "серфинга электронов" на электромагнитной волне, что позволяет ускорять пучок с приращением энергии почти на 20 МэВ на одном метре ускоряющей системы. В этом ускорителе высокочастотная мощность на частоте около 3 ГГц генерируется большими электровакуумными приборами - клистронами. Протонный линейный ускоритель на самую высокую энергию был построен в Лосаламосской национальной лаборатории в шт. Нью-Мексико (США) в качестве "мезонной фабрики" для получения интенсивных пучков пионов и мюонов. Его медные резонаторы создают ускоряющее поле порядка 2 МэВ/м, благодаря чему он дает в импульсном пучке до 1 мА протонов с энергией 800 МэВ. Для ускорения не только протонов, но и тяжелых ионов были разработаны сверхпроводящие высокочастотные системы. Самый большой сверхпроводящий протонный линейный ускоритель служит инжектором ускорителя на встречных пучках ГЕРА в лаборатории Немецкого электронного синхротрона (ДЕЗИ) в Гамбурге (Германия).
ЦИКЛИЧЕСКИЕ УСКОРИТЕЛИ
Протонный циклотрон. Существует весьма элегантный и экономичный способ ускорения пучка путем многократного сообщения ему небольших порций энергии. Для этого с помощью сильного магнитного поля пучок заставляют двигаться по круговой орбите и много раз проходить один и тот же ускоряющей промежуток. Впервые этот способ был реализован в 1930 Э.Лоуренсом и С.Ливингстоном в изобретенном ими циклотроне. Как и в линейном ускорителе с дрейфовыми трубками, пучок экранируется от действия электрического поля в тот полупериод, когда оно действует замедляюще. Заряженная частица с массой m и зарядом q, движущаяся со скоростью v в магнитном поле H, направленном перпендикулярно ее скорости, описывает в этом поле окружность радиусом R = mv/qH. Поскольку ускорение приводит к увеличению скорости v, возрастает и радиус R. Таким образом, протоны и тяжелые ионы движутся по раскручивающейся спирали все возрастающего радиуса. При каждом обороте по орбите пучок проходит через зазор между дуантами - высоковольтными полыми D-образными электродами, где на него действует высокочастотное электрическое поле (рис. 3). Лоуренс сообразил, что время между прохождениями пучка через зазор в случае нерелятивистских частиц остается постоянным, поскольку возрастание их скорости компенсируется увеличением радиуса. На протяжении той части периода обращения, когда высокочастотное поле имеет неподходящую фазу, пучок находится вне зазора. Частота обращения дается выражением


где f - частота переменного напряжения в МГц, Н - напряженность магнитного поля в Тл, а mc2 - масса частицы в МэВ. Если величина H постоянна в той области, где происходит ускорение, то частота f, очевидно, не зависит от радиуса
(см. также ЛОУРЕНС Эрнест Орландо).



Для ускорения ионов до высоких энергий необходимо лишь, чтобы магнитное поле и частота высоковольтного напряжения отвечали условию резонанса; тогда частицы будут дважды за оборот проходить через зазор между дуантами в нужный момент времени. Для ускорения пучка до энергии 50 МэВ при ускоряющем напряжении 10 кэВ потребуется 2500 оборотов. Рабочая частота протонного циклотрона может составлять 20 МГц, так что время ускорения - порядка 1 мс. Как и в линейных ускорителях, частицы в процессе ускорения в циклотроне должны фокусироваться в поперечном направлении, иначе все они, кроме инжектированных со скоростями, параллельными полюсным наконечникам магнита, выпадут из цикла ускорения. В циклотроне возможность ускорения частиц с конечным разбросом по углам обеспечивается приданием магнитному полю особой конфигурации, при которой на частицы, выходящие из плоскости орбиты, действуют силы, возвращающие их в эту плоскость. К сожалению, по требованиям стабильности сгустка ускоряемых частиц фокусирующая компонента магнитного поля должна уменьшаться с увеличением радиуса. А это противоречит условию резонанса и приводит к эффектам, ограничивающим интенсивность пучка. Другой существенный фактор, снижающий возможности простого циклотрона, - релятивистский рост массы, как необходимое следствие увеличения энергии частиц:


В случае ускорения протонов синхронизм будет нарушаться из-за релятивистского прироста массы примерно при 10 МэВ. Один из способов поддержания синхронизма - модулировать частоту ускоряющего напряжения так, чтобы она уменьшалась по мере увеличения радиуса орбиты и увеличения скорости частиц. Частота должна изменяться по закону


Такой синхроциклотрон может ускорять протоны до энергии в несколько сот мегаэлектровольт. Например, если напряженность магнитного поля равна 2 Тл, то частота должна уменьшаться примерно от 32 МГц в момент инжекции до 19 МГц и менее при достижении частицами энергии 400 МэВ. Такое изменение частоты ускоряющего напряжения должно происходить на протяжении нескольких миллисекунд. После того как частицы достигают высшей энергии и выводятся из ускорителя, частота возвращается к своему исходному значению и в ускоритель вводится новый сгусток частиц. Но даже при оптимальной конструкции магнита и наилучших характеристиках системы подвода высокочастотной мощности возможности циклотронов ограничиваются практическими соображениями: для удержания на орбите ускоряемых частиц с высокой энергией нужны чрезвычайно большие магниты. Так, масса магнита циклотрона на 600 МэВ, сооруженного в лаборатории ТРИУМФ в Канаде, превышает 2000 т, и он потребляет электроэнергию порядка нескольких мегаватт. Стоимость же сооружения сихроциклотрона примерно порпорциональна кубу радиуса магнита. Поэтому для достижения более высоких энергий при практически приемлемых затратах требуются новые принципы ускорения.
Протонный синхротрон. Высокая стоимость циклических ускорителей связана с большим радиусом магнита. Но можно удерживать частицы на орбите с постоянным радиусом, увеличивая напряженность магнитного поля по мере увеличения их энергии. Линейный ускоритель инжектирует на эту орбиту пучок частиц сравнительно небольшой энергии. Поскольку удерживающее поле необходимо лишь в узкой области вблизи орбиты пучка, нет необходимости в магнитах, охватывающих всю площадь орбиты. Магниты расположены лишь вдоль кольцевой вакуумной камеры, что дает огромную экономию средств. Такой подход был реализован в протонном синхротроне. Первым ускорителем подобного типа был "Космотрон" на энергию 3 ГэВ (рис. 4), который начал работать в Брукхейвенской национальной лаборатории в 1952 в США; за ним вскоре последовал "Беватрон" на энергию 6 ГэВ, построенный в Лаборатории им. Лоуренса Калифорнийского университета в Беркли (США). Сооруженный специально для обнаружения антипротона, он работал на протяжении 39 лет, продемонстрировав долговечность и надежность ускорителей частиц.



В синхротронах первого поколения, построенных в США, Великобритании, Франции и СССР, фокусировка была слабой. Поэтому была велика амплитуда радиальных колебаний частиц в процессе их ускорения. Ширина вакуумных камер составляла примерно 30 см, и в этом все-таки большом объеме требовалось тщательно контролировать конфигурацию магнитного поля. В 1952 было сделано открытие, позволившее резко уменьшить колебания пучка, а следовательно, и размеры вакуумной камеры. Это был принцип сильной, или жесткой, фокусировки. В современных протонных синхротронах со сверхпроводящими квадрупольными магнитами, расположенными по схеме сильной фокусировки, вакуумная камера может быть меньше 10 см в поперечнике, что приводит к значительному уменьшению размеров, стоимости и потребляемой мощности фокусирующих и отклоняющих магнитов. Первым синхротроном, основанным на этом принципе, был "Синхротрон с переменным градиентом" на энергию 30 ГэВ в Брукхейвене. Аналогичная установка была построена в лаборатории Европейской организации ядерных исследований (ЦЕРН) в Женеве. В середине 1990-х годов оба ускорителя все еще находились в эксплуатации. Апертура "Синхротрона с переменным градиентом" была примерно в 25 раз меньше, чем у "Космотрона". Потребляемая магнитом мощность при энергии 30 ГэВ примерно соответствовала мощности, потребляемой магнитом "Космотрона" при 3 ГэВ. "Синхротрон с переменным градиентом" ускорял 6Ч1013 протонов в импульсе, что соответствовало самой высокой интенсивности среди установок этого класса. Фокусировка в этом ускорителе осуществлялась теми же магнитами, что и отклоняли пучок; это достигалось приданием полюсам магнита формы, показанной на рис. 5. В современных ускорителях для отклонения и фокусировки пучка, как правило, используются отдельные магниты.




ЛАБОРАТОРИЯ ИМ. Э. ФЕРМИ близ Батавии (США). Длина окружности "Главного кольца" ускорителя составляет 6,3 км. Кольцо расположено на глубине 9 м под окружностью в центре снимка.


В середине 1990-х годов самым крупным протонным синхротроном являлся "Теватрон" Национальной ускорительной лаборатории им. Э. Ферми в Батавии (США). Как подсказывает само название, "Теватрон" ускоряет сгустки протонов в кольце диаметром 2 км до энергии порядка 1 ТэВ. Ускорение протонов осуществляется целой системой ускорителей, начиная с генератора Кокрофта - Уолтона в качестве инжектора, из которого отрицательные ионы водорода с энергией 750 кэВ вводятся в линейный ускоритель на энергию 400 МэВ. Затем пучок линейного ускорителя пропускается через углеродную пленку для обдирки электронов и инжектируется в промежуточный синхротрон - бустер - диаметром 150 м. В бустере протоны совершают примерно 20 000 оборотов и приобретают энергию 8 ГэВ. Обычно бустер выполняет 12 быстро следующих друг за другом рабочих циклов, в результате которых в "Главное кольцо" - еще один протонный синхротрон с протяженностью кольца 6,3 км - инжектируется 12 сгустков протонов. "Главное кольцо", в котором протоны ускоряются до энергии 150 ГэВ, состоит из 1000 обычных магнитов с медными обмотками, отклоняющих и фокусирующих протоны. Непосредственно под "Главным кольцом" расположен состоящий из 1000 сверхпроводящих магнитов оконечный синхротрон "Теватрон". Пучок может выводиться по многим каналам на расстояние 1,5-3 км для проведения исследований во внешних экспериментальных залах. Для удержания на орбите пучков с более высокими энергиями требуются более сильные отклоняющие и фокусирующие магниты. Предназначенные для субъядерной "микроскопии" протонные синхротроны на энергии больше 1 ТэВ требуют тысяч сверхпроводящих и фокусирующих магнитов длиной 5-15 м с апертурой шириной в несколько сантиметров, обеспечивающих исключительно высокую точность полей и стабильность их во времени. Основными факторами, сдерживающими создание протонных синхротронов на более высокие энергии, являются большая стоимость и сложность управления, связанные с их огромными размерами.
УСКОРИТЕЛИ СО ВСТРЕЧНЫМИ ПУЧКАМИ
Циклические коллайдеры. Далеко не вся энергия ускоренной частицы идет на осуществление нужной реакции. Значительная ее часть бесполезно теряется в виде отдачи, претерпеваемой частицей мишени в силу закона сохранения импульса. Если налетающая частица имеет энергию Е, а масса частицы покоящейся мишени равна М, то полезная энергия составляет


Таким образом, в экспериментах с покоящейся мишенью на "Теватроне" полезная энергия составляет всего лишь 43 ГэВ. Стремление использовать в исследованиях частиц как можно более высокие энергии привело к созданию в ЦЕРНе и Лаборатории им. Э.Ферми протон-антипротонных коллайдеров, а также большого числа установок в разных странах со встречными электрон-позитронными пучками. В первом протонном коллайдере соударения протонов и антипротонов с энергиями 26 ГэВ происходили в кольце с длиной окружности 1,6 км (рис. 6). За несколько дней удавалось накопить пучки с током до 50 А.



В настоящее время коллайдером с самой высокой энергией является "Теватрон", на котором проводятся эксперименты при соударении пучка протонов, имеющих энергию 1 ТэВ, со встречным пучком антипротонов той же энергии. Для таких экспериментов необходимы антипротоны, которые можно получить, бомбардируя пучком протонов высокой энергии из "Главного кольца" металлическую мишень. Рождающиеся в этих соударениях антипротоны накапливают в отдельном кольце при энергии 8 ГэВ. Когда накоплено достаточно много антипротонов, их инжектируют в "Главное кольцо", ускоряют до 150 ГэВ и далее инжектируют в "Теватрон". Здесь протоны и антипротоны одновременно ускоряют до полной энергии, а затем осуществляют их соударения. Суммарный импульс сталкивающихся частиц равен нулю, так что вся энергия 2Е оказывается полезной. В случае "Теватрона" она достигает почти 2 ТэВ. Наибольшая энергия среди электрон-позитронных коллайдеров была достигнута на "Большом электрон-позитронном накопительном кольце" в ЦЕРНе, где энергия сталкивающихся пучков на первом этапе составляла 50 ГэВ на пучок, а затем была увеличена до 100 ГэВ на пучок. В ДЕЗИ сооружен коллайдер ГЕРА, в котором происходят соударения электронов с протонами. Этот огромный выигрыш в энергии достигается ценой значительного уменьшения вероятности столкновений между частицами встречных пучков низкой плотности. Частота столкновений определяется светимостью, т.е. числом столкновений в секунду, сопровождающихся реакцией данного типа, имеющей определенное сечение. Светимость линейно зависит от энергии и тока пучка и обратно пропорциональна его радиусу. Энергию пучка коллайдера выбирают в соответствии с энергетическим масштабом исследуемых физических процессов. Для обеспечения наибольшей светимости необходимо добиться максимально возможной плотности пучков в месте их встречи. Поэтому главной технической задачей при проектировании коллайдеров является фокусировка пучков в месте их встречи в пятно очень малых размеров и увеличение тока пучка. Для достижения нужной светимости могут потребоваться токи более 1 А. Еще одна исключительно сложная техническая проблема связана с необходимостью обеспечивать в камере коллайдера сверхвысокий вакуум. Поскольку столкновения между частицами пучков происходят сравнительно редко, соударения с молекулами остаточного газа могут существенно ослаблять пучки, уменьшая вероятность изучаемых взаимодействий. Кроме того, рассеяние пучков на остаточном газе дает нежелательный фон в детекторе, способный замаскировать изучаемый физический процесс. Вакуум в камере коллайдера должен лежать в пределах 10-9 - 10-7 Па (10-11 - 10-9 мм рт. ст.) в зависимости от светимости. При более низких энергиях можно ускорять более интенсивные пучки электронов, что дает возможность исследовать редкие распады В- и К-мезонов, обусловленные электрослабыми взаимодействиями. Ряд таких установок, иногда называемых "фабриками ароматов", сооружается в настоящее время в США, Японии и Италии. Такие установки имеют два накопительных кольца - для электронов и для позитронов, пересекающихся в одной или двух точках, - областях взаимодействия. В каждом кольце содержится много сгустков частиц при полном токе более 1 А. Энергии пучков выбираются с таким расчетом, чтобы полезная энергия соответствовала резонансу, который распадается на изучаемые короткоживущие частицы - В- или К-мезоны. В основе конструкции этих установок лежат электронный синхротрон и накопительные кольца.
Линейные коллайдеры. Энергии циклических электрон-позитронных коллайдеров ограничиваются интенсивным синхротронным излучением, которое испускают пучки ускоренных частиц (см. ниже). Этого недостатка нет у линейных коллайдеров, в которых синхротронное излучение не сказывается на процессе ускорения. Линейный коллайдер состоит их двух линейных ускорителей на высокие энергии, высокоинтенсивные пучки которых - электронный и позитронный - направлены навстречу друг другу. Пучки встречаются и соударяются только один раз, после чего отводятся в поглотители. Первым линейным коллайдером является "Стэнфордский линейный коллайдер", использующий Стэнфордский линейный ускоритель длиной 3,2 км и работающий при энергии 50 ГэВ. В системе этого коллайдера сгустки электронов и позитронов ускоряются в одном и том же линейном ускорителе и разделяются по достижении пучками полной энергии. Затем электронные и позитронные сгустки транспортируются по отдельным дугам, форма которых напоминает трубки медицинского стетоскопа, и фокусируются до диаметра около 2 мкм в области взаимодействия.
Новые технологии. Поиски более экономичных методов ускорения привели к созданию новых ускорительных систем и высокочастотных генераторов большой мощности, работающих в диапазоне частот от 10 до 35 ГГц. Светимость электрон-позитронных коллайдеров должна быть исключительно высокой, поскольку сечение процессов убывает как квадрат энергии частиц. Соответственно этому и плотности пучков должны быть чрезвычайно высокими. В линейном коллайдере на энергию порядка 1 ТэВ размеры пучков могут достигать 10 нм, что намного меньше размеров пучка в "Стэнфордском линейном коллайдере" (2 мкм). При столь малых размерах пучков для точного согласования фокусирующих элементов необходимы очень мощные стабильные магниты со сложными электронными автоматическими регуляторами. При прохождении электронного и позитронного пучков друг через друга их электрическое взаимодействие нейтрализуется, а магнитное усиливается. В результате магнитные поля могут достигать 10 000 Тл. Такие гигантские поля способны сильно деформировать пучки и приводить к большому энергетическому разбросу вследствие генерации синхротронного излучения. Эти эффекты наряду с экономическими соображениями, связанными с сооружением все более и более протяженных машин, будут ставить предел энергии, достижимой на электронно-позитронных коллайдерах.
ЭЛЕКТРОННЫЕ НАКОПИТЕЛИ
Электронные синхротроны основаны на тех же принципах, что и протонные. Однако благодаря одной важной особенности они проще в техническом отношении. Малость массы электрона позволяет инжектировать пучок при скоростях, близких к скорости света. Поэтому дальнейшее увеличение энергии не связано с заметным увеличением скорости, и электронные синхротроны могут работать при фиксированной частоте ускоряющего напряжения, если пучок инжектируется с энергией около 10 МэВ. Однако это преимущество сводится на нет другим следствием малости электронной массы. Поскольку электрон движется по круговой орбите, он движется с ускорением (центростремительным), а потому испускает фотоны - излучение, которое называется синхротронным. Мощность Р синхротронного излучения пропорциональна четвертой степени энергии пучка Е и току I, а также обратно пропорциональна радиусу кольца R, так что она пропорциональна величине (E/m)4IR -1. Эта энергия, теряемая при каждом обороте электронного пучка по орбите, должна компенсироваться высокочастотным напряжением, подаваемым на ускоряющие промежутки. В рассчитанных на большие интенсивности "фабриках аромата" такие потери мощности могут достигать десятков мегаватт. Циклические ускорители типа электронных синхротронов могут использоваться и как накопители больших циркулирующих токов с постоянной высокой энергией. Такие накопители имеют два основных применения: 1) в исследованиях ядра и элементарных частиц методом встречных пучков, о чем говорилось выше, и 2) как источники синхротронного излучения, используемые в атомной физике, материаловедении, химии, биологии и медицине. Средняя энергия фотонов синхротронного излучения пропорциональна (E/m)3R-1. Таким образом, электроны с энергией порядка 1 ГэВ, циркулирующие в накопителе, испускают интенсивное синхротронное излучение в ультрафиолетовом и рентгеновском диапазонах. Большая часть фотонов испускается в пределах узкого вертикального угла порядка m/E. Поскольку радиус электронных пучков в современных накопителях на энергию порядка 1 ГэВ измеряется десятками микрометров, пучки испускаемого ими рентгеновского излучения характеризуются высокой яркостью, а потому могут служить мощным средством исследования структуры вещества. Излучение испускается по касательной к криволинейной траектории электронов. Следовательно, каждый отклоняющий магнит электронного накопительного кольца, когда через него проходит сгусток электронов, создает разворачивающийся "прожекторный луч" излучения. Оно выводится по длинным вакуумным каналам, касательным к основной вакуумной камере накопителя. Расположенные вдоль этих каналов щели и коллиматоры формируют узкие пучки, из которых далее с помощью монохроматоров выделяется нужный диапазон энергий рентгеновского излучения. Первыми источниками синхротронного излучения были установки, первоначально сооруженные для решения задач физики высоких энергий. Примером может служить Стэнфордский позитрон-электронный накопитель на энергию 3 ГэВ в Стэнфордской лаборатории синхротронного излучения. На этой установке в свое время были открыты "очарованные" мезоны. Первые источники синхротронного излучения не обладали той гибкостью, которая позволяла бы им удовлетворять разнообразным нуждам сотен пользователей. Быстрый рост потребности в синхротронном излучении с высоким потоком и большой интенсивностью пучка вызвал к жизни источники второго поколения, спроектированные с учетом потребностей всех возможных пользователей. В частности, были выбраны системы магнитов, уменьшающие эмиттанс электронного пучка. Малый эмиттанс означает меньшие размеры пучка и, следовательно, более высокую яркость источника излучения. Типичными представителями этого поколения явились накопители в Брукхейвене, служившие источниками рентгеновского излучения и излучения вакуумной ультрафиолетовой области спектра. Яркость излучения можно также увеличить, заставив пучок двигаться по синусоидальной траектории в периодической магнитной структуре и затем объединяя излучение, возникающее при каждом изгибе. Ондуляторы - магнитные структуры, обеспечивающие подобное движение, представляют собой ряд магнитных диполей, отклоняющих пучок на небольшой угол, расположенных по прямой на оси пучка. Яркость излучения такого ондулятора может в сотни раз превышать яркость излучения, возникающего в отклоняющих магнитах. В середине 1980-х годов начали создаваться источники синхротронного излучения третьего поколения с большим числом таких ондуляторов. Среди первых источников третьего поколения можно отметить "Усовершенствованный источник света" с энергией 1,5 ГэВ в Беркли, генерирующий мягкое рентгеновское излучение, а также "Усовершенствованный источник фотонов" с энергией 6 ГэВ в Аргоннской национальной лаборатории (США) и синхротрон на энергию 6 ГэВ в Европейском центре синхротронного излучения в Гренобле (Франция), которые используются как источники жесткого рентгеновского излучения. После успешного сооружения этих установок был создан ряд источников синхротронного излучения и в других местах. Новый шаг в направлении большей яркости в диапазоне от инфракрасного до жесткого рентгеновского излучения связан с использованием в системе отклоняющих магнитов "теплых" магнитных диполей с напряженностью магнитного поля около 1,5 Тл и гораздо более коротких сверхпроводящих магнитных диполей с полем в несколько тесла. Такой подход реализуется в новом источнике синхротронного излучения, создаваемом в институте П. Шеррера в Швейцарии, и при модернизации источника в Беркли. Применение синхротронного излучения в научных исследованиях получило большой размах и продолжает расширяться. Исключительная яркость таких пучков рентгеновского излучения позволяет создать новое поколение рентгеновских микроскопов для изучения биологических систем в их нормальной водной среде. Открывается возможность быстрого анализа структуры вирусов и белков для разработки новых фармацевтических препаратов с узкой направленностью действия на болезнетворные факторы и минимальными побочными эффектами. Яркие пучки рентгеновского излучения могут служить мощными микрозондами для выявления самых ничтожных количеств примесей и загрязнений. Они дают возможность очень быстро анализировать экологические пробы при исследовании путей загрязнения окружающей среды. Их можно также использовать для оценки степени чистоты больших кремниевых пластин перед дорогостоящим процессом изготовления очень сложных интегральных схем, и они открывают новые перспективы для метода литографии, позволяя в принципе создавать интегральные схемы с элементами меньше 100 нм.
УСКОРИТЕЛИ В МЕДИЦИНЕ
Ускорители играют важную практическую роль в медицинской терапии и диагностике. Многие больничные учреждения во всем мире сегодня имеют в своем распоряжении небольшие электронные линейные ускорители, генерирующие интенсивное рентгеновское излучение, применяемое для терапии опухолей. В меньшей мере используются циклотроны или синхротроны, генерирующие протонные пучки. Преимущество протонов в терапии опухолей перед рентгеновским излучением состоит в более локализованном энерговыделении. Поэтому протонная терапия особенно эффективна при лечении опухолей мозга и глаз, когда повреждение окружающих здоровых тканей должно быть по возможности минимальным. См. также

1.1 . Физические основы коллайдеров

Коллайдеры (ускорители со встречными пучками) - это установки, в которых осуществляется столкновение встречных ускоренных пучков заряженных частиц.
В обычных ускорителях пучок частиц, ускоренных до высокой энергии, взаимодействует с частицами неподвижной мишени. При этом вследствие закона сохранения полного импульса большая часть энергии налетающих частиц расходуется на сохранение движения центра масс системы, т.е. на сообщение кинетической энергии частицам - продуктам распада. Лишь небольшая ее часть определяет полезную и эффективную энергию столкновения - энергию взаимодействия частиц в системе их центра масс (центре инерции), которая может расходоваться, например, на рождение новых частиц.
При неподвижной мишени частица мишени с массой покоя m 0 в лабораторной системе отсчета имеет в центре масс энергию покоя E 0 = m 0 c 2 , а другая, налетающая частица, обладающая той же массой покоя m 0, движется в этой системе с релятивистской скоростью и обладает несравнимо большей энергией, чем покоящаяся частица (Е >> E 0). Энергия в системе центра масс (центра инерции) определяется формулой . Чем больше Е, тем меньшая ее доля составляет эффективную энергию взаимодействия частиц.
Если же сталкиваются частицы, движущиеся с равными по величине, но противоположно направленными импульсами, то их суммарный импульс равен нулю. В этом случае лабораторная система отсчета совпадает с системой центра масс частиц и эффективная энергия столкновения равна сумме энергий сталкивающихся частиц. Для легких частиц с одинаковыми массами и энергией Е, Е цм = 2E эта кинетическая энергия может быть полностью использована на взаимодействие. .
В системе центра масс частицы движутся навстречу друг другу с одинаковыми импульсами и энергиями E, суммарный импульс продуктов реакции равен нулю. Вся начальная энергия расходуется на интересующее нас рождение частиц, на проникновение в мелкомасштабную структуру материи.
При столкновении частиц их энергия передается мельчайшим "капелькам" вещества, которые "взрываются", и мы наблюдаем разлет образовавшихся частиц. Исследователи узнают об устройстве вещества на мелкомасштабном уровне по специфическим распределениям этих частиц или по родившимся новым частицам (большинство из которых живут очень недолго) .
Преимущество процесса взаимодействия на встречных пучках особенно велико для легких частиц - электронов, позитронов (из-за их малой энергии покоя). Ускорители с неподвижной мишенью и ускорители на встречных пучках считаются эквивалентными, если при одних и тех же сталкивающихся частицах они имеют одинаковые полезные энергии, затрачиваемые непосредственно на реакцию взаимодействия в центре масс. Формула, связывающая кинетические энергии частиц в эквивалентных ускорителях с неподвижной мишенью Е н и на встречных пучках Е цм. в ультрарелятивистском случае имеет вид : Е н = Е 2 цм. /2Е 0 . Используя это соотношение, можно подсчитать энергию для ускорителя с неподвижной мишенью, эквивалентного коллайдеру.
Расчет показывает, что для получения кинетической энергии эквивалентной энергии БЭПК (LEP), равной Е цм = 0,209 ТэВ без использования встречных пучков энергия ускорителя должна была бы составлять E н = 4,274×10 4 ТэВ, а Е н.. / Е цм =2·10 5). Те же величины для адронного коллайдера LHC составляют E н = 1,044·10 5 ТэВ и Е н.. / Е цм =7500 (LEP и LHC - самые большие из построенных электрон-позитронных и адронных кольцевых коллайдеров) Из приведенных результатов расчета видно, что только используя схему встречных пучков, мы имеем возможность получать очень высокие эффективные энергии.
При использовании меньших энергий можно было бы обойтись и традиционными ускорителями, однако реализация принципа столкновения частиц позволяет сделать установку существенно более компактной.

1.2 . Сравнение кольцевых и линейных коллайдеров. Синхротронное излучение

Как видно из Табл. 1а, за исключением коллайдера SLAC (СЛК, SLC), все построенные коллайдеры были кольцевыми. Кольцевые коллайдеры практически всегда более компактны, чем линейные. Необходимо отметить, однако, что использование кольцевых траекторий для ускорения легких частиц ограничивается сильным синхротронным излучением, возникающим при их вращении.
Энергия синхротронного излучения U для релятивистской частицы зависит от её массы m 0 энергии Е, радиуса траектории ρ и определяется формулой :

(1.1)

Из-за большой разницы между массой покоя электронов и протонов при одинаковых энергиях и радиусах вращения мощность синхротронного излучения электронного пучка будет в 1013 раз больше чем протонного.
В коллайдере БЭПК (LEP), где вращающийся пучок характеризовался следующими параметрами:
Е ≈ 100 ГэВ, ρ = 4 км, В = 0,75 Тл, потери энергии на один оборот составляли 2 ГэВ. В случае протонных коллайдеров коэффициент 8,85×10 -5 в формуле (1.1) должен быть заменен на 7,8×10 -18 .
Из-за больших синхротронных потерь, электрон - позитронные кольцевые коллайдеры на энергию в центре масс боٰльшую 208 БэВ не создавались. Тем не менее в работе рассматривался проект электрон - позитронного коллайдера, расположенного в тоннеле того же диаметра, что и коллайдер БЭПК (длина кольца 22,8 км). При светимости 10 32 см -2 с -1 энергия каждого пучка должна была бы составить 400 ГэВ. Чтобы покрыть потери на синхротронное излучение пришлось бы затратить 100 ГВ ВЧ мощности.
В настоящее время при использовании электронов (позитронов) перспективными в ТэВ-м диапазоне в первую очередь считаются линейные коллайдеры. В тоже время разрабатываются кольцевые мюонные коллайдеры, где сталкиваются элементарные частицы с массой значительно превышающей массу электронов. Предполагается, что первые мюонные коллайдеры будут обладать энергией в центре масс 0,1 - 3 ТэВ и светимостью (1 - 5)×10 34 см -2 с -1 .

1.3 . Основные параметры коллайдеров

Первая основная характеристика коллайдера - энергия его пучков - выбирается исходя из задач физики элементарных частиц, которые предполагается решать при его создании. Обычно круг этих задач оказывается весьма широким. В Табл.2 -1 приведены данные о некоторых экспериментах, которые проводятся или будут проводиться в ряде коллайдеров высокой энергии. Краткие сведения о частицах, сталкиваемых в коллайдерах и о задачах, решаемых в физике элементарных частиц, будут рассмотрены в следующем разделе.
Светимость коллайдера является его второй важнейшей характеристикой. С увеличением светимости увеличивается число сталкивающихся частиц. Геометрическая светимость зависит от частоты (f) cтолкновений сгустков, числа частиц в сгустке каждого пучка (n 1 и n 2) и от поперечного сечения сгустка (S). Светимость (L) определяется формулой :

При столкновении частиц между ними может произойти взаимодействие, а может и не произойти. Имеется возможность определить только вероятность того или иного исхода столкновения. Вероятность взаимодействия определяется величиной поперечного эффективного сечения взаимодействия σ, которое имеет размерность площади (см 2) и определяется формулой:

σ = N/L, (2.1)

где N - число частиц, которые испытали взаимодействие в единицу времени (неупругие столкновения). Величина σ обычно выражается в миллибарнах (1 мбарн = 10 -27 см 2). В работе и в ряде других работ приводится формула, определяющая величину светимости, где учитываются эмиттанс пучка, гауссово распределение электронов в сгустке, учитывается также величина полного угла столкновения сгустков.
Часто используют понятие интегральной светимости (или интеграл светимости), то есть светимость, умноженная на время работы ускорителя в течение «стандартного ускорительного года. Длительность одного стандартного года обычно принимают равным 10 6 - 10 7 секунд, что примерно равно четырем месяцам. Интегральную светимость обычно выражают в обратных пикобарнах (пбарн -1) или обратных фемтобарнах (фбарн -1).
Для того чтобы узнать, как часто будет происходить какой-то процесс на конкретном коллайдере, надо умножить сечение процесса на светимость коллайдера (N = σL). Из-за неидеальной эффективности детектора количество реально зарегистрированных событий будет, конечно, меньше.
Не всегда стремятся к получению максимально возможной светимости. Если в каждом сгустке адронного коллайдера будет очень много частиц, то при их столкновении одновременно будет происходить несколько независимых протон-протонных столкновений. Детектор будет фиксировать наложенные друг на друга следы сразу всех этих столкновений, что затруднит анализ процесса взаимодействия.
Поскольку сечение процессов убывает как квадрат энергии частиц, светимость коллайдеров на большую энергию должна быть исключительно высокой. Значения светимости некоторых построенных коллайдеров приведены выше в Табл.1-В и 2-В

Таблица № 2.1. Исследования, проводимые на некоторых коллайдерах

Наименование
коллайдера
Энергия пучков
коллайдера,
ГэВ
Светимость
коллайдера
10 30 см -2 с -1
Некоторые исследования, проводимые на коллайдере
KEKB е − : 8
е + :3,5
16270
PEP-II е − : 7-12
е + : 2,5- 4
10025 Получение тяжелых кварков и тяжелых лептонов. В-фабрика - получение В мезонов, исследование нарушения симметрии
SLC

е + е − : 91

6 ИсследованиеZ 0 бозона

е + е − : 100-104,6

24 на Z 0
100 при > 90 ГэВ
Исследование бозонов слабого взаимодействия Z 0 и W ±
171 Поиск бозонов Хиггса
RHIC pp,
Au-Au,
Cu-Cu,
d-Au:100/n
10; 0,0015; 0,02; 0,07

Большой адронный коллайдер
БАК (LHC)

pp: 3500
(план 7000)
Pb-Pb: 1380/n
(план 2760)
10000 (план) Поиск бозонов Хиггса.
Изучение кварк-глюонной плазмы
Международный линейный коллайдер, ILC
Компактный линейный коллайдер,CLIC Исследование бозонов Хиггса

Проектное значение введенного в 2009 г в эксплуатацию Большого адронного коллайдера БАК (LHC) в ЦЕРН определено в L =10 34 см -2 с -1 . Если предположить что поперечное эффективное сечение взаимодействия в центре масс в коллайдере БАК составляет σ = 80 мб , то при работе БАК на энергии в центре масс 14 ГэВ величина N = 8×10 8 с - 1 .
Предполагается, что продолжительность работы коллайдера составит примерно 10 7 с в год, а его интегральная светимость за год составит около 10 41 см -2 . При σ = 80 мб в год может происходить 8×10 15 событий. В большинстве из этих событий будет рождаться несколько тысяч частиц. Никакие электронные и компьютерные системы не в состоянии обработать такой поток информации. Столь высокая светимость, однако, необходима при исследовании крайне редких событий с малым поперечным сечением, которые характерны для новой физики. При хорошей электронике, позволяющей осуществлять надежный отбор событий с заранее известными признаками, можно получать информацию примерно до ста событий в год в процессе с очень низким сечением σ = 1 фб. Именно для работы с такими событиями и нужна высокая светимость коллайдера .
К третьей основной характеристике коллайдера можно отнести тип сталкивающихся частиц. Из приведенных выше Табл.1-В и Табл.2-В видно, что построены и используются как электрон - позитронные, протон-антипротонные коллайдеры, так и электрон-протонные коллайдеры. Следует отметить, что применение античастиц не является обязательным, так как разница в знаке заряда мало влияет на результаты физических исследований. Отличие в знаке заряда больше влияет на конструкцию коллайдера В кольцевых коллайдерах использование частиц и античастиц позволяет осуществлять их движение по одному каналу (трубе), как это делается, например, в коллайдере Теватрон. В тоже время в коллайдере БАК сталкиваются только протоны или ионы свинца одного знака. Для этого, однако, потребовалась проводка сталкивающихся частиц по двум разным каналам.
Электрон-позитронные линейные коллайдеры имеют определенные преимущества перед адронными коллайдерами в части анализа результатов, получаемых в экспериментах. В тоже время, из-за отсутствия накопительных колец, в них труднее получать высокую светимость.
Сравнение характера столкновений в электрон-позитронных и адронных коллайдерах рассматриваются в следующих разделах.

1.4 . Краткие сведения о физике элементарных частиц

В настоящее время основу физики элементарных частиц представляет «Стандартная модель» - квантово-механическая теория локальных полей. В ней рассматриваются поля каждого типа элементарных частиц (кроме гравитационного поля). Колебания таких полей переносят энергию и импульс с одного места пространства в другое. Согласно квантовой механике волны собираются в пакеты, или кванты, которые наблюдаются в лаборатории в виде элементарных частиц.
В «Стандартной модели» (Табл.3.1) фермионы это - элементарные частицы, из которых складывается вещество Они представлены двумя видами полей: полями лептонов (лептон от греческого «leptos» - легкий) и полями кварков («quark» - фундаментальная частица в стандартной модели). Фермионы разбиты на три поколения. Каждый член следующего поколения имеет массу большую, чем соответствующая частица предыдущего. Все обычные атомы содержат частицы первого поколения. Второе и третье поколения заряженных частиц не присутствуют в обычной материи и наблюдаются только в условиях очень высоких энергий.


Таблица № 3.1. Стандартная модель

Квантами лептонных полей являются: электроны, более тяжелые частицы - мюоны, таоны, и электрически нейтральные частицы, известные как нейтрино.
Квантами полей кварков являются: верхний, нижний, очаровательный, странный, истинный и прелестный кварки. Некоторые из кварков связаны вместе внутри протонов и нейтронов, составляющих ядра обычных атомов. Составные части ядра: протоны и нейтроны тоже являются фермионами.
Силы взаимодействия между частицами, обусловлены процессами обмена фотонами, W + , W - и Z 0 частицами, а также восемью типами глюонов (gluon), Переносчики взаимодействий получили название калибровочных бозонов .
Электромагнитное взаимодействие имеет место между заряженными частицами. Под действием электромагнитных сил не происходит изменения частиц, они только притягиваются или отталкиваются. Переносчиком взаимодействия являются фотоны. Электромагнитное взаимодействие удерживает электроны в атомах и связывает атомы в молекулах и кристаллах.
Сильному взаимодействию подвержены кварки. Оно связывает их вместе, образуя протоны, нейтроны и другие комбинированные частицы. Сильное взаимодействие влияет на связь между протонами и нейтронами в атоме. Переносчиками этого возбуждения являются глюоны. Это самое сильное взаимодействие в природе. Оно является преобладающим видом взаимодействия в ядерной физике высоких энергий. Взаимодействие ограничивается весьма короткими расстояниями.
Слабое взаимодействие имеет место между кварками и лептонами. Наиболее известный эффект слабого взаимодействия - видоизменение кварков, которое в свою. очередь, заставляет нейтрон распадаться на протон, электрон и анти-нейтрино.
Переносчиками возбуждения являются W + , W - и Z 0 бозоны. Слабое взаимодействие, проявляется при бета-распаде радиоактивных ядер, имеет очень малую дальность.
Четвертой силой взаимодействия является сила гравитации. В квантовой теории предполагается, что переносчиком гравитационного взаимодействия является гравитон. Гравитон - частица, не имеющая массы. Она обладает спином, равным 2.
Гравитационное взаимодействие универсально. В нем участвуют все частицы. Это взаимодействие является самым слабым. Оно связывает части земного шара, объединяет Солнце и планеты в Солнечную систему, связывает звезды в галактиках, определяет крупномасштабные события Вселенной .
. Гравитационное поле описывалось Общей теорией относительности Эйнштейна. В первой половине ХХ века предпринимались многочисленные попытки создания единой теории фундаментальных взаимодействий, включающей гравитацию. Однако ни одной полностью удовлетворительной модели пока предложено не было. Это, в частности, связано с тем, что общая теория относительности и теории, описывающие другие взаимодействия различны по своей сути. Тяготение описывается искривлением пространства-времени, и в этом смысле гравитационное поле нематериально, в то время как другие поля являются материей . Их объединения пока не удалось достичь также из-за трудностей создания квантовой теории гравитации. В настоящее время для объединения фундаментальных взаимодействий используются различные подходы: теория струн , петлевая квантовая гравитация , а также М-теория .
Стандартная Модель предполагает существование еще одного поля, которое практически неотделимо от пустого пространства и не совпадает с гравитационным полем. Его принято называть полем Хиггса. Считается, что все пространство заполнено этим полем и что все фундаментальные частицы (лептоны, кварки и калибровочные бозоны) приобретают массу в результате взаимодействия с полем Хиггса.
Квантами этого поля являются бозоны Хиггса. Бозон Хиггса теоретически предсказан в 1964 году шотландским физиком П. Хиггсом .
Бозон Хиггса — последняя до сих пор не найденная частица «Стандартной модели».
Эта частица так важна, что нобелевский лауреат Леон Ледерман назвал её «частицей-бога» . Предполагается наличие четырех или даже пяти бозонов Хиггса, которые являются скалярными частицами, т.е. имеют нулевой спин. О пяти разновидностей бозона Хиггса с разными зарядами (три нейтральных, один положительный и один отрицательный) сообщается в работе .
Долгое время предполагалось, что верхняя граница массы бозона Хиггса менее 1 ТэВ.
Однако в 2004 г. на коллайдере Теватрон при обработке данных эксперимента, полученных по определению массы t - кварка, значение верхней границы массы бозона Хиггса было ограничено 251 ГэВ.
Исследования по обнаружению бозона Хиггса проводились и продолжаются на ряде других коллайдерах. Широкий цикл исследований по нахождению бозона Хиггса был осуществлен на коллайдере LEP c энергией в центре масс 208 ГэВ, но успехом не увенчался.
Ожидается, что экспериментальное подтверждение наличия бозонов Хиггса и уточнение их
характеристик будет выполнено на коллайдере БАК.
Как видно из Табл. 2.1 на нескольких коллайдерах ведутся исследования состояния материи, называемой кварк-глюонной плазмой, где цветные кварки и глюоны, как свободные частицы, образуют непрерывную среду, называемую хромоплазмой. Проводимость хромоплазмы аналогична электропроводимости, возникающей в электрон-ионной плазме . По современным представлениям кварк-глюонная плазма образуется при высоких температурах и/или больших плотностях адронной материи. Предполагают, что в естественных условиях эта плазма существовала в первые 10 -5 с после Большого взрыва. Эти условия могут присутствовать в центре нейтронных звезд. Переход в состояние кварк-глюконной плазмы может происходить при температуре, соответствующей кинетической энергии ~200 МэВ.
Первые экспериментальные результаты, касающиеся кварк-глюонной плазмы были получены в в 1990 г. в ЦЕРН на Супер протонном синхронтроне, СПС (SPS). Затем в 2000 г., также в ЦЕРН было объявлено об открытия этого «нового состояния материи». Дальнейшие исследования проводились на коллайдере RHIC. Считается, что для образования кварк-глюонной плазмы необходима энергия ~3,5 ТэВ. В 2010 г было сообщено, что по предварительным данным температура плазмы составила 3,5 -4 триллиона градусов Цельсия. Работы велись при столкновении в RHIC ионов свинца и золота. Коллайдер работал при энергии в центре масс ~ 33 ТэВ .
В ноябре 2010 г работа с ионами свинца и получением кварк-глюонной плазмы началиcь на Большом адроном коллайдере LHC. В течение первой недели была получена кварк-глюонная плазма с температурой в десятки триллионов градусов .
Одним из важных направлений физики элементарных частиц является изучение вопросов симметрии. Так на коллайдерах PEP II и KEK-B, которые, в частности являются фабриками В - мезонов исследуются вопросы нарушения СP cимметрии (С - зарядная симметрия, трансформация частицы в античастицу). P - пространственная симметрия, зеркальное отображение системы . Сначала физики полагали, что при проведении симметричного преобразования любого взаимодействия между частицами результат будет неизменен - симметрия сохранится. Однако экспериментальные исследования показали, что при слабых взаимодействиях происходит нарушение как Р-, так и С- симметрии . Изучение вопросов нарушения симметрии на коллайдерах PEP II и KEK-B эффективно благодаря их высокой светимости.
В ближайшее время изучение вопросов симметрии будет проводиться при очень высоких энергиях коллайдера БАК, что позволит измерить гораздо большее число распадов В-мезонов с нарушением СР симметрии, чем в предыдущих экспериментах. Стандартная модель пройдет еще одну доскональную проверку, и появится объяснение того, почему природа предпочла вещество антивеществу .
Основная цель повышения энергии ускоренных частиц состоит в том, что это дает возможность изучать взаимодействие частиц на все меньших расстояниях и за более короткие времена. Удается изучать внутреннюю структуру элементарных частиц, обладающих крайне малыми размерами
Не предвидится никаких оснований полагать, что квантовая теория поля не работает вплоть до масштабов, соизмеримых с длиной Планка где начинают проявляться квантовые эффекты гравитации и где структура материи соответствует расстояниям порядка 10 -33 см и массе планка m p ≈ ћc/G) 1/2 ≈ 1.2×10 19 ГэВ/c 2 , т. е энергии в центре масс ≈10 19 ГэВ (ћ - постоянная Дирака, с -скорость света, G- гравитационная постоянная)
Наименьший доступный масштаб изучаемых явлений при столкновении частиц с импульсами p (энергия E = (p 2 c 2 + m 2 c 4) 1/2 определяется длиной волны l = h/p = hc/E.
Для решения данной задачи и используются соударения элементарных частиц в коллайдерах.
Сотни экспериментов уже позволили проникнуть в структуру материи, которая характеризуется расстояниями 10 -18 см . Конечно, создание коллайдеров на энергию в центре масс ≈ 10 7 ТэВ для реализации расстояний в 10 -33 см не представляется возможным.

1.5 . Сравнение адронных и лептонных коллайдеров

Представляет интерес рассмотреть некоторые преимущества и недостатки адронных и электрон - позитронных коллайдеров.
Адроны: протоны и антипротоны являются составными частицами, состоящими из трех кварков (двух u-кварков с электрическим зарядом +2/3 и одного d-кварка с зарядом -1/3, которые скреплены вместе глюонным полем (смотри также Табл.3.1 и ) Однако, если протон летит со скоростью очень близкой к скорости света, он оказывается заполненным в основном глюонами, а кварков и антикварков в нём содержится заметно меньше. Протоны и антипротоны в таких условиях выглядят практически одинаково, и поэтому нет особой разницы, сталкиваются ли протоны с протонами или протоны с антипротонами. Глюонное поле в нём перестает быть просто связывающей силой и материализуется в виде потока частиц — глюонов, — которые летят рядом с кварками. Быстро летящий протон состоит из перемешанных друг в друге глюонных, кварковых и даже антикварковых «облаков» — партонных плотностей.
Когда два протона сталкиваются лоб в лоб, то один кварк из одного протона сталкивается с кварком из встречного протона, а остальные партоны просто пролетают мимо. При столкновении партоны получают сильный «удар», выбивающий их из родительских протонов. Однако глюонное поле обладает конфайнментом - явлении, состоящем в невозможности получения кварков в свободном состоянии. В экспериментах наблюдаются только агрегаты кварков, состоящие из двух мезонов или трёх кварков (барионы). Происходит адронизация — энергия удара тратится на рождение многочисленных адронов. В этом процессе партоны - «наблюдатели» уже принимают самое активное участие. Можно хорошо рассчитать процессы с отдельными кварками или глюонами, но точно описать адронизацию пока не удается. В связи с адронизацией протон-протонное столкновение сильно отличается от столкновения лептонов (например электрон-позитрон). Процесс анализа p - p + столкновений весьма сложен.
Связь между теорией и экспериментом при адронных столкновениях не столь непосредственна, как в электрон-позитронных столкновениях. В экспериментах на адронных коллайдерах более сложно определить свойства новых частиц.
В отличие от протона, электрон и позитрон - элементарные частицы, и энергия, выделяемая при их столкновениях, определяется с высокой точностью. Электрон- позитронные коллайдеры позволяют легче определять так же другие характеристики, открываемых частиц .
Построенные адронные коллайдеры обладают очень большой энергией в центре масс. Однако далеко не вся эта энергия может быть использована на рождение новых частиц. Так для БАК из полной энергии 14 ТэВ полезно используется только энергия в 2 ТэВ. В случае электрон-позитронных ускорителей практически вся энергия оказывается полезной . Таким образом, при одинаковой энергии в центре масс электрон-позитронные коллайдеры имеют 5 -10 кратное преимущество перед адронными коллайдерами .
Характеризуя электрон-позитронные линейные коллайдеры следует отметить, что частота повторения соударений встречных сгустков мала по сравнению с кольцевыми электрон- позитронными коллайдерами. Следует еще раз отметить, что основной недостаток линейных коллайдеров состоит в том, что каждый сгусток электронов и позитронов используется только один раз.
Вблизи плотного потока заряженных частиц электромагнитное поле, ими возбуждаемое очень велико. Излучение в этом поле приводит к большим потерям энергии сталкивающихся частиц и увеличивает уровень шума. Для его ослабления пучки растягивают в одном из поперечных направлений .
Благодаря малому эмиттансу пучков и очень сильной их фокусировке, в линейных коллайдерах надеются получить светимость в центре масс, равную ((2-6) ×10 34 см -2 с -1 , не уступающую светимости кольцевых коллайдеров.

Литература к Введению и Главе 1

Properties of an intersecting beam accelerating system”// Kerst D. W./ CERN Symposium, v. I, Gen., 1956, p. 36 http://cdsweb.cern.ch/record/1241555/files/p36.pdf

«Ускорители и встречные пучки» // Г.И. Будкер / В кн.: Труды VII Международной конференции по ускорителям заряженных частиц высоких энергий, т. 1, Ер., 1970, с. 33; Встречные пучки. Шестое Всесоюзное совещание по ускорителям заряженных частиц (Дубна, 1978), Дубна, 1978, с. 13; X Международная конференция по ускорителям заряженных частиц высоких энергий (Протвино, 1977), т. 1, Серпухов, 1977,.

«Ускорители на встречных пучках» // В. П. Дмитриевский./ Большая советская энциклопедия http://slovari.yandex.ru/~книги/БСЭ/Ускорители%20на%20встречных%20пучках .

« Физика хиггсовского бозона на будущих фотонных коллайдерах»// И.П.Иванов/ http://hnature.web.ru/db/msg.html?mid=1181352

« Темная энергия вселенной» // В. Лукин, Е. Михеева /«Вокруг света» № 9 (2816). Сентябрь 2008.

«Поиски частиц темной энергии»// В.А.Рябов и др./»Успехи физических наук» Том 1788,№11 с.1129-1161

“CLIC 2008 PARAMETERS”// H. Braun et all / CLIC-Note-764

“Design Study of the CLIC Injector and Booster Linacs With the 2007 Beam Parameters”// A. Ferrari et al./ CLIC - Note -737

”A Very Large Lepton Collider in the WLHC tunnel”//T.Sen and J.Norem /www.capp. ill.edu/workshops//opem/References/sen.pdf.

“Эксперимент”// Б.С. Ишханов, И.М. Капитонов, Э.И. Кэбин / Web-публикация на основе учебного пособия Б.С. Ишханов, И.М. Капитонов, Э.И. Кэбин. "Частицы и ядра. Эксперимент", М.: Издательство МГУ, 2005. http://nuclphys.sirp.msu.ru /experiment/

“Коллайдер” // Б.С. Ишханов, И.М. Капитонов, Э.И. Кэбин / http://nuclphys.sirp.msu.ru/experiment/accelerators/collider.htm .

“ LHC Machine”//L. Evans and P.Bryant (editirs)/ Published by Institute of Physics Publishing and SISSA, 2008 JINST 3 SO8001

“Физика на Большом адроном коллайдере”/ / ”Успехи Физических Наук”, Том179, №6. Июнь 2009 г., с.571-579 (устный выпуск журнала «Успехи физических наук»)

« Единая физика к 2050» // С. Вайнберг, перевод А. Крашеницы/ http://www.scientifisic.ru/journal/weinberg/weinberg,html .

« Эксперименты на адронных коллайдерах» http://elementy.ru/LHC/experiments

«Физика ядра и элементарных частиц. Элементарные частицы» //В. Каланов/ http://znaniya-sila.narod.ru/phisics/phisics_atom_02.htm

«Четыре основных вида сил в природе»// Ч.Киттель, У.Найт, М. Рудерман/ Берклеевский Курс Физики. Том 1. Механика, стр.456

«Основы физики элементарных частиц. Строение материи»// http://physics03.narod.ru/Interes/Doclad/bak3.htm

«Фундаментальные взаимодействия»// http://ru.wikipedia.org/wiki/Фундаментальные_взаимодействия

«За гранью БАК: будущие коллайдеры» // Д. Борн/ http://www.3dnews.ru/news/za_granu_bak_budushie_kollaideri/

«Грядущие революции в фундаментальной физике» //Дэвид Гросс/ http://elementy.ru/lib/430177

«Петлевая квантовая гравитация» http://ru.wikipedia.org/wiki

“Ученые увеличили число частиц бога до 5» // Lenta.ru. http://lenta.ru/news/2010/06/15/boson/

«Кварк-глюонная плазма» // http://сайт/enc/e036.htm

“ Hunting the Quark Gluon Plasma”// BNL-73847-2005 Final Report / www.bnl.gov/npp/docs/Hunting%20the%20QGP.pdf Физика

«Эксперимент LHCb»//НИЯФ МГУ,2004 / http://physics03.narod.ru/Interes/Doclad/antiv.htm

«Движение заряженных частиц в электрических и магнитных полях»// Л.А. Арцимович и С.Ю. Лукьянов /Книга. Издательство «Наука». Москва 1972, стр.171-177

«Коллайдер нового поколения» //Б. Бэриш, Н. Уоке http:// physics03.narod.ru/Interes/Doclad/bak13.htmр, Х. Ямамото. Перевод: А.А. Сорокин Специальный репортаж в журнале "В мире науки" № 5 за 2008 год Коллайдер нового поколения.

”Accelerator Physics and Technologies for Linear Collider. Lecture I”// S.D..Holmes/ Hep.uchicago.edu/~kwangie/LectureNotes_Holmes.pdf

«Фотонные коллайдеры и исследование фундаментальных взаимодействий»// И. Ф. Гинзбург/ http://www-fima-ru.narod.ru/

“Muon Collider Progress”// R.B. Palmer

/www.cern.ch/accelconf/e98/PAPERS/THZ04A.PDF THZ04A.PDF

“ MULTI-MODE SLED-II PULSE COMPRESSOR”// S.V. Kuzikov et all /Proceedings of LINAC 2004, THP28 pp. 660-662

“ A Multy-Moded RF Delay Linear Distribution System” //S.G. Tantawi et all / SLAC-PUB-9125

“RF Breakdown Studies in Room Temperature Electron Linac Structures / Gregory A. Loew and W. Wang // Slac-PUB-4647, May 1988.

“ Gradient Limitation For High-frequency Accelerators”/ Döbert // Proceedings of Linac 2004, Lübeck, Germany, WE 101

“ The Physics & Technology of a 0,5 to 1,0 TeV Linear colliders”.// Stuart Tovey - Wollongang - 2004./ Интернет, SNT- Wollongang, ppt.

“4 XFEL accelerator” //

“The European X-Ray Free-Electron Laser. Technical design report” // http://xfel.desy.de/localfs.Explorer_read?Current.Path =afs/desy.de/group/xfel/wof/EPT/TRD/XFEL-TRD-final.pdf.

ВВЕДЕНИЕ

Ускорители на встречных пучках, получили название коллайдеров (от английского слова to collide - сталкиваться). Они являются основными инструментами экспериментального изучения процессов физики элементарных частиц в области сверхвысоких энергий Величина энергии получаемая при столкновениях пучков не может быть достигнута в обычных ускорителях с неподвижной мишенью.
Разработка и сооружение установок со встречными пучками была начата в 1956 г. в лабораториях России (СССР) и за рубежом после опубликования предложения об использовании коллайдеров американского физика У. Керста .
В работе Г.И. Будкера содержится замечание, что впервые идею о применении встречных пучков высказал Я.Б. Зельдович (СССР), правда в пессимистическом тоне из-за малой плотности частиц в сталкивающихся пучках.
Первоначально создавались электрон-электронные и электрон-позитронные коллайдеры (1956-1966 гг.) Предложение об их разработке принадлежит Г.И. Будкеру (СССР) . Первые коллайдеры были созданы в Институте ядерной физики (СССР Россия), в Стэнфордском центре линейных ускорителей (США), в лаборатории линейных ускорителей во Фраскати (Италия), в лаборатории Орсэ (Франция). Несколько позже были запущены адронные коллайдеры (адрон - от греческого слова «adros», означающее «крупный, массивный»), в том числе коллайдеры с ионами. Коллайдеры с протон-протонными и протон-электронными пучками были созданы в ЦЕРН (Швейцария), Германии и Великобритании (смотри Табл.1а-В и Табл. 1b-В).
Проблема увеличения светимости сталкивающихся пучков в кольцевых коллайдерах была решена, благодаря аккумуляции ускоряемых частиц в накопительных кольцах. В линейных коллайдерах большая плотность взаимодействующих пучков обеспечивается ускорителями с сильноточными пучками, которые обладают малым эмиттансом и малым энергетическим разбросом, а также при использовании синхротронного излучения в демпфирующих кольцах и ионизационного охлаждения.
Первый электрон-позитронный коллайдер ВЭПП-2, изготовленный в ИЯФ им. Г.И. Будкера (Россия), был кольцевым. В качестве ускорителя использовался безжелезный синхротрон, пучок которого инжектировался в накопительное кольцо. Пока единственный линейный электрон-позитронный коллайдер создан на основе ускорителя SLAC. Повышение светимости в нем достигается благодаря использованию демпфирующих колец.
Появление ускорителей заряженных частиц и коллайдеров с высокой энергией позволило развивать новые теоретические модели физики элементарных частиц, осуществлять экспериментальную проверку «Стандартной модели».
Физические исследования в области элементарных частиц потребовали существенного увеличения энергии сталкивающихся лептонов и адронов в центре масс (до 1 ТеВ и более). На сооружении коллайдеров в ТэВ-ом диапазоне энергией с конца 80-х годов прошлого столетия сконцентрировано внимание мирового содружества ученых. В настоящее время эти работы стали интернациональными.
Физики надеются, что экстремально высокие энергии позволят ответить на ряд фундаментальных вопросов науки: как частицы приобретают массу? Что представляет собой структура пространство - время? Что создает темную энергию и темную материю космоса? . Предполагается в частности , что на коллайдерах станет возможным проведение точных измерений характеристик Хиггс бозона, ответственного за возникновения массы элементарных частиц и установление его поля. На них также окажется возможным исследование вопросов суперсимметрии.

Таблица № 1а-В. Перечень основных построенных коллайдеров

Наименование
коллайдера
ХАРАКТЕРИСТИКИ УСКОРИТЕЛЕЙ
Центр, город, страна Годы работы Тип частиц Максим.
энергия
пучка, ГэВ
Светимость
10 30 см -2 с -1
Периметр
(длина),
км
ВЭПП-2000 ИЯФ,
Россия
2006 е + е − 1 100 0,024
ВЭПП-4М ИЯФ,
Россия
1994 е + е − 6 20 0,366
ВЕРС Китай 1989-2005 е + е − 2,2 5 на 1,55 ГэВ 12,6 на 1,843 ГэВ 0,2404
ВЕРС-II Китай c 2007 е + е − 1,89 1000 0,23753
DAFNE Frascati, Италия 1999-2008 е + е − 0,7 150 0,098
CESR Cornell 1979- 2002 е + е − 6 1280 на 5,3 ГэВ 0,768
CESR-C Cornell с 2002 е + е − 6 60 на 1,9 ГэВ 0,768

KEK, Япония

е + е − е − : 8
е + :3,5
SLAC, е + е − е − : 7-12
е + : 2,5- 4
СЛК SLAC, е + е − 6 Линейный
3
HERA DESY, Германия c 1992

e 30
p 920

75 6,336
Tevatron Fermilab,
США
c 1987 p + p − 980 171 6,28
RHIC Brookhaven,
США

pp,
Au-Au,
Cu-Cu,
d-Au

10;
0,0015;
0,02;
0,07

3,834
Большой э/п коллайдер БЭПК (LEP) CERN е + е − 24 на Z o

100 при > 90 ГэВ

Большой адронный коллайдер БАК (LHC) CERN pp, 3500
(план 7000)
10000

(В 2011 году достигнуто 0,001)

26,659
Pb-Pb 1380/n
(план 2760)

Физики почти уверены, что революционные открытия с использованием коллайдеров будут сделаны в пределах следующие десять - пятнадцать лет.
Продолжение разработки новых электрон-позитронных линейных коллайдеров, в том числе фотонных и мюонных, происходит во время, когда начал работать Большой кольцевой адронный коллайдер (БАК, LHC). На этом коллайдере в первую очередь будут решаться упомянутые выше задачи физике элементарных частиц и вопросы мироздания.

Таблица № 1b -В. Перечень некоторых разрабатываемых линейных коллайдеров

В коллайдерах в качестве ускорителей нашли применение синхротроны и линейные резонансные ускорители (ЛРУ). Даже в кольцевых колайдерах, основанных на синхротронах, в качестве инжекторов синхротронов обязательно используются ЛРУ. Ускорение частиц в синхротронах происходит в резонаторных системах, являющихся фрагментами ВЧ систем линейных ускорителей. ЛРУ являются основой линейных лептонных коллайдеров. Новые перспективные методы ускорения частиц в коллайдерах, такие как кильватерное ускорение в плазме, также требуют использования ЛРУ, как возбудителей плазмы.
Разработка новых линейных высокоэнергетичных электрон-позитронных коллайдеров заставила провести широкие теоретические и экспериментальные исследования в части выбора диапазона рабочих частот, используемых в линейных резонансных ускорителях. электронов (ЛУЭ) и протонов (ЛУП). Стремление сократить длину ускорителей потребовало разработки новых ускоряющих структур, работающих в С -,Х -, K u - и К диапазонах длин волн.
При создании новых коллайдеров.ТеВ - диапазона энергий были решены многие вопросы технологии линейных резонансных ускорителей. Созданы ВЧ ускоряющие структуры, перечисленных выше диапазонов, работающие при существенно более высоких частотах, чем использовавшиеся ранее. Обеспечивается надежная работа «теплых» структур с ускоряющим градиентом в 100 МВ/м на частотах до 12 ГГц.(K u - диапазон).
Разработаны высокомощные ВЧ источники - однолучевые клистроны Х диапазона.
Усовершенствованы также другие элементы трактов ВЧ питания, например, устройства компрессии ВЧ импульса или задержанного распределения . Эта техника позволяет использовать один клистрон для питания нескольких ускоряющих секций.
Разработаны многолучевые клистроны L диапазона на импульсную мощность 10 МВт и длительность ВЧ импульса 1,6 мс.
В тоже время необходимо отметить, что первоначально намеченные цели создания коллайдеров Т - диапазона энергий, используя линейные ускорители K диапазона (частота 30 ГГц), реализовать не удалось. Идея использования сверхвысоких частот основывалась на том, что электрическая прочность структуры почти линейно повышается с увеличением частоты . Широкие теоретические и экспериментальные исследования Нового Линейного Коллайдера (NLC) в США, Глобального линейного коллайдера (GLC) в Японии, Японского линейного коллайдера (JLC) и компактного линейного коллайдера (КЛК, CLIC) в Швейцарии показали однако, что, по крайней мере при существующей технологии, отсутствует заметное увеличение предельного градиента электрического поля на частотах колебаний свыше 12 ГГц. С этим и был связан переход от частоты 30 ГГц на частоту 12 ГГц в коллайдере CLIC.
Желание увеличить надежность работы и некоторые другие причины привели к тому, что разработка Международного (глобального) линейного электрон-позитронного коллайдера (Internation Linear Collider, ILC) стала основываться на использовании в нем L- диапазона частот и сверхпроводящих ускоряющих структур.
Другой проблемой, которую пришлось решать, была связана с поперечными диодными модами высокого порядка, наводимыми электронными или позитронными сгустками частиц в ускоряющих структурах и электронопроводах. Появление этих полей особенно нежелательно при больших длинах электронных трактов. Высшие моды поперечных дипольных полей приводят к увеличению поперечных размеров пучка (вплоть до его развала), увеличению эмиттанса и энергетического разброса. Моды, вызывающие нестабильность пучков, особенно неприятны при высоких частотах, но должны обязательно подавляться также и в L - диапазоне.
Особое место занимают вопросы, связанные с проектом Компактного Линейного Коллайдера, КЛК (Compact Linear Collider, CLIC). В отличие от обычных схем в CLIC используется принцип двух-лучевого ускорения . Питание основных многосекционных ускоряющих структур ЛУ электронов и позитронов осуществляется не клистронами, а ВЧ энергией, которая генерируется в де-ускорителях при торможении релятивистского пучка ускорителей-возбудителей.
Как указывалось выше, создание ЛУЭ для коллайдеров стимулировало разработку новых клистронов большой мощности, в том числе, многолучевых в разных частотных диапазонах..
Следует отметить, что разработки ЛУЭ для коллайдеров нашли применение в лазерах на свободных электронах, при создания установок неразрушающего контроля, для терапии и диагностики злокачественных образований. ВЧ техника, разработанная для Международного линейного коллайдера, и связанная с ЛУЭ, используется при проектировании Европейского рентгеновского лазера на свободных электронах, сооружаемого в ДЭЗИ .
Основные вопросы, относящиеся к ЛРУ, решались при сооружении и разработке линейных коллайдеров электронов и позитронов. В основном они освещены в Главе 3 «Линейные электрон-позитронные и фотонные коллайдеры высокой энергии». Более кратко, вопросы, относящиеся к ЛРУ - инжекторам и системам ускорения частиц в синхротронах изложены в Главе 2 «КОЛЬЦЕВЫЕ КОЛЛАЙДЕРЫ ВЫСОКОЙ ЭНЕРГИИ», где описываются Большой электрон-позитронный коллайдер (БЭПК) и большой адронноый коллайдер (БАК).
Материал, связанный с кильватерным методом ускорения, приведен в Главе 4 «КИЛЬВАТЕРНЫЙ МЕТОД УСКОРЕНИЯ».
Некоторые сведения о ЛРУ и фрагментах ВЧ систем ЛРУ, которые используются в фотонных и мюонных ускорителях даны в разделе 2.3 «МЮОННЫЕ КОЛЛАЙДЕРЫ». и в разделе 3.4 «ФОТОННЫЕ КОЛЛАЙДЕРЫ». Следует отметить, однако, что в опубликованной литературе пока отсутствуют детали ЛРУ, проектируемые для мюонных коллайдеров.
Предполагается, что читатель знаком с теорией и техникой резонансных линейных ускорителей.
Для удобства пользования книгой в Главе 1 кратко рассматриваются некоторые вопросы теории коллайдеров, что даст возможность работать с книгой, меньше прибегая к другим источникам информации, содержащейся в многочисленных монографиях, статьях и докладах, ссылки на которые приведены в конце этой Главы.

Кандидат физико-математических наук Е. ЛОЗОВСКАЯ.

До какого предела можно раздробить крупицу вещества, например песчинку? Из чего состоит окружающий нас мир? Как, когда и откуда появились звёзды, планеты и всё остальное? Эти вопросы давно не дают человеку покоя. И чем глубже проникают учёные в тайны природы, тем сложнее становятся научные эксперименты.

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наверное, каждый из нас хотя бы раз пытался разобрать игрушку, чтобы посмотреть, что у нее внутри. Подобное любопытство движет и учёными, которые стремятся выяснить устройство материи вплоть до самых элементарных кирпичиков. А чтобы проводить такие исследования, проектируют и строят специальные экспериментальные установки - ускорители.

На границе Швейцарии и Франции, глубоко под землёй, проходит огромный кольцевой тоннель. Его длина - без малого 27 км. Когда-то, еще в 80-е годы XX века, этот тоннель прорыли для того, чтобы исследователи из ЦЕРНа - Европейского центра ядерных исследований - могли разгонять в нём до огромных скоростей электроны и позитроны. Теперь в этом самом тоннеле создан новый ускоритель, который получил название «Большой адронный коллайдер».

Что это такое?

Слово «коллайдер» происходит от английского collide - сталкиваться. В коллайдере два пучка частиц летят навстречу друг другу и при столкновении энергии пучков складываются. В обычных ускорителях пучок ударяет по неподвижной мишени и энергия такого соударения гораздо меньше.

Почему коллайдер называется адронным? Среди элементарных частиц есть семейство адронов. К нему относятся протоны и нейтроны, из которых состоят ядра всех атомов, а также разнообразные мезоны. Важное свойство адронов - то, что они не являются по-настоящему элементарными частицами, а состоят из кварков, «склеенных» глюонами.

Разогнать в адронном коллайдере можно далеко не всякий адрон, а только тот, что имеет электрический заряд. Например, нейтрон - частица нейтральная, что видно из названия, и электромагнитное поле на него не действует. Поэтому главными объектами эксперимента станут протоны (ядра атомов водорода) и тяжёлые ядра свинца.

На сегодняшний день Большой адронный коллайдер - самый мощный в мире. С его помощью физики надеются получить протоны с энергией 7ТэВ (тераэлектронвольт, то есть 10 12 эВ). Это значит, что при столкновении выделится суммарная энергия 14 ТэВ. Чтобы достичь такой энергии, протоны должны лететь почти со световой скоростью (если точнее, то со скоростью, которая составляет 0,999999991 от скорости света). При этом каждый протон за одну секунду пролетит по 27-километровому кольцу 11 000 раз! Пучок протонов может летать внутри коллайдера 10часов. За это время он преодолеет более 10 миллиардов километров - расстояние до планеты Нептун и обратно.

Как он устроен?

Вдоль всего тоннеля установлены сверхпроводящие магниты. Частицы разгоняются в электрическом поле, а магнитное поле направляет их по круговой траектории - иначе они врежутся в стенку. Поскольку магниты не простые, а сверхпроводящие (только они позволяют достичь требуемых величин магнитного поля), то для работы их необходимо охладить до температуры 1,9 К. Это ниже, чем температура в космическом пространстве (2,7 К). Чтобы получить космический холод в земных условиях, в охлаждающие системы коллайдера требуется залить 120 т жидкого гелия.

Два пучка движутся во встречных направлениях по двум кольцевым трубам. Ничто не должно мешать движению частиц, поэтому воздух из труб откачан до глубокого вакуума. Столкновения могут происходить только в четырёх точках, где трубы пересекаются. Столкновение двух частиц «лоб в лоб» - событие довольно редкое. Когда пересекаются два пучка по 100 миллиардов частиц в каждом, сталкиваются всего 20 частиц. Но поскольку пучки пересекаются примерно 30 миллионов раз в секунду, ежесекундно может происходить 600 миллионов столкновений.

Зачем он нужен?

Взаимодействие и превращения известных на сегодняшний день элементарных частиц неплохо описывает теория, называемая Стандартной моделью. Но на некоторые вопросы эта теория ответить не может. Например, она не может объяснить, почему одни частицы имеют большую массу, а другие не имеют её вовсе. Есть гипотеза, что за массу отвечает особая частица - бозон Хиггса. Её-то и надеются обнаружить физики при столкновении протонных пучков с большой энергией. Возможно, что Большой адронный коллайдер поможет нам понять, что такое тёмная материя и тёмная энергия, на которые, как считают астрофизики, приходится более 95% всей материи во Вселенной.

В столкновениях пучков тяжёлых ядер физики надеются создать условия Большого взрыва - отправной точки развития Вселенной. Считается, что в первые мгновения после взрыва существовала лишь кварк-глюонная плазма. По прошествии одной сотой доли микросекунды кварки объединились по три и образовали протоны и нейтроны. До сих пор ни в одном эксперименте не удалось «расколоть» протон и выбить из него отдельные кварки. Но как знать, быть может, Большой адронный коллайдер справится с этой задачей - ведь при столкновении ядер свинца предполагается достичь температуры, в сто тысяч раз превышающей температуру в центре Солнца.

Как увидеть невидимое?

К сожалению, в распоряжении учёных нет прибора, который мог бы напрямую зарегистрировать, например, кварк-глюонную плазму: через ничтожно короткий промежуток в 10 -23 секунды она исчезнет без следа. О результатах эксперимента приходится судить по «уликам» - следам, оставленным частицами, родившимся в ходе эксперимента. Как шутят физики, это не легче, чем воссоздать облик Чеширского кота по его улыбке.

О чёрных дырах и «конце света»

С Большим адронным коллайдером связано множество мифов. Например, говорят о том, что при столкновении частиц с высокой энергией образуется чёрная дыра, в которую может «затянуть» всю нашу планету, и наступит «конец света». На самом деле рекордная для физики элементарных частиц энергия в 14 ТэВ чрезвычайно мала - это две миллионные доли джоуля. Чтобы довести до кипения один литр воды, потребуется энергия более ста миллиардов протон-протонных столкновений. Кроме того, Землю в течение миллиардов лет бомбардируют космические частицы с энергией в миллионы раз большей, чем энергия протонов в ускорителе. И пока ни к каким ужасным последствиям это не привело. Правда, некоторые физики полагают, что чёрные дыры в коллайдере появятся - но микроскопические и очень коротко живущие.

Энергию измеряют в разных единицах - в джоулях, калориях, киловатт-часах. В международную систему СИ входит только джоуль. Но в физике элементарных частиц для измерения энергии чаще всего используют электронвольт и его производные - КэВ, МэВ, ГэВ, ТэВ. Электронвольт - удобная единица. Она основана на понятном представлении, что одиночный электрон ускоряется разностью потенциалов в 1 вольт и приобретает при этом определенное количество энергии. 1 эВ = 1,6.10 -19 Дж. В электронвольтах измеряют не только энергию, но и массу. Согласно знаменитому уравнению Эйнштейна E=mc 2 , энергия и масса - две стороны одной монеты. Масса может трансформироваться в энергию и наоборот. В коллайдере такие превращения происходят при каждом столкновении.

То, что вещество состоит из неделимых частиц - атомов, предположил древнегреческий ученый Демокрит (кстати, «атом» в переводе с древнегреческого означает «неделимый»). Но лишь через многие столетия физики доказали, что так оно и есть. Потом обнаружилось, что атом на самом деле разделить можно, - он состоит из электронов и ядра, а ядро - из протонов и нейтронов. Но и они, как выяснилось, не самые мелкие частицы и в свою очередь состоят из кварков. Физики считают, что кварки - предел деления материи и ничего меньше на свете нет. А соединяются кварки между собой с помощью глюонов (от английского glue - клей).

Физика элементарных частиц изучает самые крошечные объекты в природе. Размер атома равен 10 -10 м, размер атомного ядра - 10 -14 м, размеры протона и нейтрона - 10 -15 м, электроны меньше 10 -18 м, а кварки меньше 10 -19 м. Чтобы сравнить эти числа, представим, что диаметр протона будет равен примерно 10 см. Тогда электроны и кварки окажутся меньше 0,1 мм, а весь атом будет иметь 10 км в поперечнике.

История создания ускорителя, который мы знаем сегодня как большой адронный коллайдер, начинается ещё с 2007 года. Изначально хронология ускорителей началась с циклотрона. Прибор представлял собой небольшое устройство, которое легко умещалось на столе. Затем история ускорителей стала стремительно развиваться. Появился синхрофазотрон и синхротрон.

В истории, пожалуй, самым занимательным стал период с 1956 по 1957 годы. В те времена советская наука, в частности физика, не отставала от зарубежных братьев. Используя наработанный годами опыт, советский физик по имени Владимир Векслер совершил прорыв в науке. Им был создан самый мощный по тем временам синхрофазотрон. Его рабочая мощность была равна 10 гигаэлектронвольт (10 миллиардов электронвольт). После этого открытия создавались уже серьёзные образцы ускорителей: большой электронно-позитронный коллайдер, Швейцарский ускоритель, в Германии, США. Все они имели одну общую цель — изучение фундаментальных частиц кварков.

Большой адронный коллайдер был создан в первую очередь благодаря стараниям итальянского физика. Имя ему Карло Руббиа, лауреат Нобелевской премии. Во время своей деятельности Руббиа работал директором в Европейской организации по ядерным исследованиям. Решено было построить и запустить адронный коллайдер именно на месте центра исследований.

Где адронный коллайдер?

Коллайдер размещён на границе между Швейцарией и Францией. Длина его окружности составляет 27 километров, поэтому его и называют большим. Кольцо ускорителя уходит вглубь от 50 до 175 метров. В коллайдере установлено 1232 магнита. Они являются сверхпроводящими, а значит из них можно выработать максимальное поле для разгона, так как затраты энергии в таких магнитах практически отсутствуют. Общий вес каждого магнита составляет 3,5 тонны при длине 14,3 метра.

Как и любой физический объект, большой адронный коллайдер выделяет тепло. Поэтому его необходимо постоянно остужать. Для этого поддерживается температура 1,7 К с помощью 12 миллионов литров жидкого азота. Помимо этого, для охлаждения используется (700 тысяч литров), и самое важное - используется давление, которое в десять раз ниже нормального атмосферного.

Температура 1,7 К по шкале Цельсия составляет -271 градус. Такая температура почти близка к называется минимально возможный предел, который может иметь физическое тело.

Внутренняя часть тоннеля не менее интересна. Там находятся ниобий-титановые кабели со сверхпроводящими возможностями. Их длина составляет 7600 километров. Общий вес кабелей равен 1200 тонн. Внутренность кабеля — это сплетение 6300 проволок с общим расстоянием в 1,5 миллиарда километров. Такая длина равна 10 астрономическим единицам. Например, равняется 10 таким единицам.

Если говорить о его географическом местоположении, то можно сказать, что кольца коллайдера лежат меж городов Сен-Жени и Форнее-Вольтер, расположенными на французской стороне, а также Мейрин и Вессурат - со Швейцарской стороны. Маленькое кольцо, именуемое PS, проходит вдоль границы по диаметру.

Смысл существования

Для того чтобы ответить на вопрос «для чего нужен адронный коллайдер», нужно обратиться к учёным. Многие учёные говорят, что это самое великое изобретение за весь период существования науки, и то, что без него у науки, которая известна нам сегодня, просто нет смысла. Существование и запуск большого адронного коллайдера интересны тем, что при столкновении частиц в адронном коллайдере происходит взрыв. Все мельчайшие частицы разлетаются в разные стороны. Образовываются новые частицы, которые могут объяснить существование и смысл многого.

Первое, что учёные старались найти в этих разбившихся частицах — это теоретически предсказанную физиком Питером Хиггсом элементарную частицу, названную Это потрясающая частица является носителем информации, как считается. Ещё её принято называть «частицей Бога». Открытие ее приблизило бы учёных к пониманию вселенной. Нужно отметить, что в 2012 году, 4 июля, адронный коллайдер (запуск его частично удался) помог обнаружить похожую частицу. На сегодняшний день учёные пытаются изучить её подробнее.

Долго ли...

Конечно, сразу возникает вопрос, а почему учёные так долго изучают эти частицы. Если есть прибор, то можно запускать его, и каждый раз снимать все новые и новые данные. Дело в том, что работа адронного коллайдера — это дорогостоящее удовольствие. Один запуск обходится в большую сумму. Например, годовой расход энергии равняется 800 млн. кВт/ч. Такой объем энергии расходует город, в котором проживает около 100 тыс. человек, по средним меркам. И это не считая затрат на обслуживание. Ещё одна причина - это то, что у адронного коллайдера взрыв, который происходит при сталкивании протонов, связан с получением большого объёма данных: компьютеры считывают столько информации, что на обработку уходит большое количество времени. Даже несмотря на то что мощность компьютеров, которые получают информацию, велика даже по сегодняшним меркам.

Следующая причина — это не менее известная Учёные, работающие с коллайдером в этом направлении, уверены, что видимый спектр всей вселенной составляет всего 4%. Предполагается, что оставшиеся — это тёмная материя и тёмная энергия. Экспериментально пытаются доказать то, что эта теория верна.

Адронный коллайдер: за или против

Выдвинутая теория о тёмной материи поставила под сомнение безопасность существования адронного коллайдера. Возник вопрос: "Адронный коллайдер: за или против?" Он волновал многих учёных. Все великие умы мира разделились на две категории. «Противники» выдвинули интересную теорию о том, что если такая материя существует, то у неё должна быть противоположная ей частица. И при столкновении частиц в ускорителе возникает тёмная часть. Существовал риск того, что тёмная часть и часть, которую мы видим, столкнутся. Тогда это могло бы привести к гибели всей вселенной. Однако после первого запуска адронного коллайдера эта теория была частично разбита.

Далее по значимости идёт взрыв вселенной, вернее сказать - рождение. Считается, что при столкновении можно пронаблюдать то, как вселенная вела себя в первые секунды существования. То, как она выглядела после происхождения Большого взрыва. Считается, что процесс столкновения частиц очень схож с тем, который был в самом начале зарождения вселенной.

Ещё не менее фантастичная идея, которую проверяют учёные - это экзотические модели. Это кажется невероятным, но есть теория, которая предполагает, что существуют иные измерения и вселенные с похожими на нас людьми. И как ни странно, ускоритель и здесь сможет помочь.

Проще говоря, цель существования ускорителя в том, чтобы понять, что такое вселенная, как она была создана, доказать или опровергнуть все существующие теории о частицах и связанных с ними явлениях. Конечно, на это потребуются годы, но с каждым запуском появляются новые открытия, которые переворачивают мир науки.

Факты об ускорителе

Всем известно, что ускоритель разгоняет частицы до 99% скорости света, но не многие знают, что процент равен 99,9999991% от скорости света. Это потрясающая цифра имеет смысл благодаря идеальной конструкции и мощным магнитам ускорения. Также нужно отметить некоторые менее известные факты.

Приблизительно 100 млн. потоков с данными, которые приходят от каждого из двух основных детекторов, могут в считаные секунды заполнить больше 100 тысяч компакт-дисков. Всего за один месяц количество дисков бы достигло такой высоты, что если их сложить в стопу, то хватило бы до Луны. Поэтому было принято решение собирать не все данные, которые приходят с детекторов, а лишь те, которые разрешит использовать система сбора данных, которая по факту выступает как фильтр для полученных данных. Было решено записывать лишь 100 событий, которые возникли в момент взрыва. Записываться эти события будут в архив вычислительного центра системы Большого адронного коллайдера, который расположен в Европейской лаборатории по физике элементарных частиц, которая по совместительству является местом расположения ускорителя. Записываться будут не те события, которые были зафиксированы, а те, которые представляют для научного сообщества наибольший интерес.

Последующая обработка

После записи сотни килобайт данных будут обрабатывать. Для этого используется более двух тысяч компьютеров, расположенных, в ЦЕРН. Задача этих компьютеров заключается в обработке первичных данных и формировании из них базы, которая будет удобна для дальнейшего анализа. Далее сформированный поток данных будет направлен на вычислительную сеть GRID. Эта интернет-сеть объединяет тысячи компьютеров, которые располагаются в разных институтах по всему миру, связывает более сотни крупных центров, которые расположены на трёх континентах. Все такие центры соединены с ЦЕРН с использованием оптоволокна - для максимальной скорости передачи данных.

Говоря о фактах, нужно упомянуть также о физических показателях строения. Туннель ускорителя находится в отклонении на 1,4% от горизонтальной плоскости. Сделано это в первую очередь для того, чтобы поместить большую часть туннеля ускорителя в монолитную скалу. Таким образом, глубина размещения на противоположных сторонах разная. Если считать со стороны озера, которое находится недалеко от Женевы, то глубина будет равна 50 метрам. Противоположная часть имеет глубину 175 метров.

Интересно то, что лунные фазы влияют на ускоритель. Казалось бы, как такой отдалённый объект может воздействовать на таком расстоянии. Однако замечено, что во время полнолуния, когда происходит прилив, земля в районе Женевы, поднимается на целых 25 сантиметров. Это влияет на длину коллайдера. Протяжённость тем самым увеличивается на 1 миллиметр, а также изменяется энергия пучка на 0,02%. Поскольку контроль энергии пучка должен проходить вплоть до 0,002%, исследователи обязаны учитывать это явление.

Также интересно то, что туннель коллайдера имеет форму восьмиугольника, а не круга, как многие представляют. Углы образуются из-за коротких секций. В них располагаются установленные детекторы, а также система, которая управляет пучком ускоряющихся частиц.

Строение

Адронный коллайдер, запуск которого связан с использованием многих деталей и волнением учёных, - удивительное устройство. Весь ускоритель состоит из двух колец. Малое кольцо называется Протонный синхротрон или, если использовать аббревиатуры — PS. Большое кольцо - Протонный суперсинхротрон, или SPS. Совместно два кольца позволяют разогнать части до 99,9 % скорости света. При этом коллайдер повышает и энергию протонов, увеличивая их суммарную энергию в 16 раз. Также он позволяет сталкивать частицы между собой примерно 30 млн. раз/с. в течение 10 часов. От 4 основных детекторов получается по большей мере 100 терабайт цифровых данных в секунду. Получение данных обусловлено отдельными факторами. Например, они могут обнаружить элементарные частицы, которые имеют отрицательный электрический заряд, а также обладают половинным спином. Поскольку эти частицы являются неустойчивыми, то прямое их обнаружение невозможно, возможно обнаружить только их энергию, которая будет вылетать под определённым углом к оси пучка. Эта стадия называется первым уровнем запуска. За этой стадией следят более чем 100 специальных плат обработки данных, в которые встроены логические схемы реализации. Эта часть работы характерна тем, что в период получения данных происходит отбор более чем 100 тысяч блоков с данными в одну секунду. Затем эти данные будут использоваться для анализа, который происходит с использованием механизма более высокого уровня.

Системы следующего уровня, наоборот, принимают информацию от всех потоков детектора. Программное обеспечение детектора работает в сети. Там оно будет использовать большое количество компьютеров для обработки последующих блоков данных, среднее время между блоками - 10 микросекунд. Программы должны будут создавать отметки частиц, соответствуя изначальным точкам. В результате получится сформированный набор данных, состоящих из импульса, энергии, траектории и других, которые возникли при одном событии.

Части ускорителя

Весь ускоритель можно поделить на 5 основных частей:

1) Ускоритель электронно-позитронного коллайдера. Деталь, представляет собой около 7 тысяч магнитов со сверхпроводящими свойствами. С помощью них происходит направление пучка по кольцевому туннелю. А также они сосредотачивают пучок в один поток, ширина которого уменьшится до ширины одного волоса.

2) Компактный мюонный соленоид. Это детектор, предназначенный для общего назначения. В таком детекторе ведутся поиски новых явлений и, например, поиск частиц Хиггса.

3) Детектор LHCb. Значение этого устройства заключается в поиске кварков и противоположных им частиц - антикварков.

4) Тороидальная установка ATLAS. Этот детектор предназначен для фиксации мюонов.

5) Alice. Этот детектор захватывает столкновения ионов свинца и протон-протонные столкновения.

Проблемы при запуске адронного коллайдера

Несмотря на то что наличие высоких технологий исключает возможность ошибок, на практике все иначе. Во время сборки ускорителя происходили задержки, а также сбои. Нужно сказать, что неожиданной такая ситуация не была. Устройство содержит столько нюансов и требует такой точности, что учёные ожидали подобных результатов. Например, одна из проблем, которая встала перед учёными во время запуска - отказ магнита, который фокусировал пучки протонов непосредственно перед их столкновением. Эта серьёзная авария была вызвана разрушением части крепления вследствие потери сверхпроводимости магнитом.

Эта проблема возникла 2007 году. Из-за неё запуск коллайдера откладывали несколько раз, и только в июне запуск состоялся, спустя почти год коллайдер все же запустился.

Последний запуск коллайдера прошёл успешно, было собрано множество терабайт данных.

Адронный коллайдер, запуск которого состоялся 5 апреля 2015 года, успешно функционирует. В течение месяца пучки будут гонять по кольцу, постепенно увеличивая мощность. Цели для исследования как таковой нет. Будет повышена энергия столкновения пучков. Значение поднимут с 7 ТэВ до 13 ТэВ. Такое увеличение позволит увидеть новые возможности при столкновении частиц.

В 2013 и 2014 гг. проходили серьёзные технические осмотры туннелей, ускорителей, детекторов и другого оборудования. В результате было 18 биполярных магнитов со сверхпроводящей функцией. Нужно отметить, что общее количество их составляет 1232 штуки. Однако оставшиеся магниты не остались без внимания. В остальных заменили системы защиты от остывания, поставили улучшенные. Также улучшена охлаждающая система магнитов. Это позволяет им оставаться при низких температурах с максимальной мощностью.

Если все пройдёт успешно, то следующий запуск ускорителя пройдёт лишь через три года. Через этот период намечены плановые работы по улучшению, техническому осмотру коллайдера.

Нужно отметить, что ремонт обходится в копейку, не учитывая стоимость. Адронный коллайдер, по состоянию на 2010 год имеет цену, равную 7,5 млрд. евро. Эта цифра выводит весь проект на первое место в списке самых дорогих проектов в истории науки.

Разгоняемые в БАК элементарные частицы имеют заряд. Если речь идет, например, о протонах, этот заряд будет положительным. На находящуюся в электрическом поле частицу действует сила, которая придает ей ускорение. Именно этот физический принцип лежит в основе работы ускорительных секций БАК. С точки зрения инженерного воплощения этого принципа все, конечно, несколько сложнее. В БАК частицы ускоряются в резонаторах — камерах сложной формы. В резонаторах возбуждается мощная стоячая электромагнитная волна (в чем-то ее можно уподобить колебанию струны), фазы колебаний которой согласованы с прохождением по камере сгустка заряженных частиц таким образом, чтобы волна (в микроволновом диапазоне) все время «подталкивала» его в заданном направлении. Если частицу в БАК ускоряет электрическое поле, то направление ей задает поле магнитное. Именно каскад из сверхпроводящих магнитов постоянно отклоняет путь частицы, чтобы она двигалась не по прямой, а описывала 27-километровые круги. Кроме того, магниты отвечают за фокусирование пучка.

Почему радуга иногда видна в виде полной дуги, а иногда лишь в виде фрагментов?

В идеальном случае радуга имеет форму дуги от горизонта до горизонта, с высоты можно даже наблюдать радугу, имеющую полную кольцевую форму. Хорошо известно, что это явление возникает из-за преломления солнечных лучей в капле воды, но, если воздух насыщен влагой лишь на отдельных участках, в дуге могут возникнуть разрывы.

Каким образом из воздуха извлекается азот?

Существует несколько промышленных методов извлечения азота из атмосферного воздуха. Один из них — фракционная дистилляция сжиженного воздуха. Дело в том, что температура кипения азота (-195°C) ниже, чем температура кипения кислорода (-183°C). Поэтому при постепенном нагревании жидкого воздуха сначала испарится азот, а кислород останется в жидкой фазе. Так эти газы можно разделить.

Почему человек чихает, когда ему холодно?

Главная причина чихания, то есть взрывного выдоха через нос, — потребность организма выбросить из носоглотки некие инородные раздражители ее слизистой оболочки, например пыль или соринки. Такая же реакция следует на воспаление слизистой. Однако нервные окончания, которые подают сигнал центру в продолговатом мозге, ответственному за чихание, реагируют и на другие раздражители. Например, резкую смену температуры окружающего воздуха или даже яркий свет.

Как спят киты?

Это один из интереснейших вопросов науки о морских животных. Дело в том, что в отличие от человека, дыхание которого может управляться неосознанно, киты делают вдох и выдох сознательным усилием. Иными словами, мы можем продолжать дышать, находясь без сознания, а кит не может. Исследования дельфинов показали, что эти представители китообразных умеют спать по очереди то одним полушарием, то другим. Но недавно ученые из шотландского университета Сент-Эндрю выяснили, что, например, кашалоты способны засыпать полностью, обоими полушариями. Эти животные временами «дрейфуют» под водой в вертикальном положении, причем практически не реагируют при этом на внешние раздражители. Оказалось, что кашалоты все же улучают небольшие промежутки времени для полноценного сна. Поспав 10−15 минут, они пробуждаются, выныривают к поверхности, делают вдох и вновь погружаются под воду для очередной порции дремы.