Главная · Спорт и Фитнес · Наследственные болезни: лечение, введение. Профилактика и лечение наследственных болезней Типы генетических заболеваний

Наследственные болезни: лечение, введение. Профилактика и лечение наследственных болезней Типы генетических заболеваний

ОБЩИЕ ВОПРОСЫ

Эмпирические попытки лечить больных с наследственной патологией, предпринимавшиеся в течение 200 лет вплоть до 30-х годов XX в., не дали положительных результатов. Диагноз наследственной болезни оставался приговором больному и его семье: такие семьи считали вырождающимися. Эта позиция в медицине в первые десятилетия XX в. опиралась, по-видимому, также на генетическую концепцию об очень строгой детерминации менделирующих наследственных признаков. В связи с этим в начале XX в. возникла негативная евгеника, призывавшая насильственно ограничить деторождение у лиц с наследственной патологией. К счастью, практическая реализация негативной евгеники была недолгой из-за общественного давления.

Переломным периодом в отношении лечения наследственных болезней можно считать 20-30 годы, так, в середине 20-х годов в экспериментах на дрозофиле были получены факты, показывающие разную степень проявления действия генов в зависимости от влияния генотипической или внешней среды. На основе этих фактов были сформированы понятия о пенетрантности, экспрессивности и специфичности действия генов. Стала возможной логическая экстраполяция: если среда влияет на экспрессивность генов, то, следовательно, можно уменьшить или исключить патологическое действие генов при наследственных болезнях. На основе этих положений выдающийся русский биолог Н.К. Кольцов предложил и обосновал новое направление в медицинской генетике - евфенику - учение о хорошем проявлении наследственных задатков. По его мнению, евфеника должна изучать все условия среды, стимулирующие проявления положительных и непроявления отрицательных (наследственные болезни) наследственных свойств.

* Исправлено и дополнено при участии д-ра мед. наук, проф. А.Ю. Асанова.

Впервые в мире невропатолог и генетик С.Н. Давиденков, основываясь на собственном клиническом опыте и достижениях экспериментальной генетики, в начале 1930-х годов указал на ошибочность мнения о неизлечимости наследственных болезней и вырождении семей с такими болезнями. Он, как и Н.К. Кольцов, исходил из признания роли факторов внешней и внутренней среды в проявлении наследственных болезней. С.Н. Давиденков настаивал на принципиальных возможностях вмешательства в функционирование патологических аллелей и сам много сделал для разработки методов лечения наследственных болезней нервной системы. Такая исходная позиция позволяла разрабатывать различные подходы и методы лечения лиц с наследственными болезнями на основе достижений генетики, теоретической и клинической медицины. Однако отсутствие сведений о патогенетических механизмах наследственных болезней в тот период ограничивало возможности разработки методов. Все подобные попытки, несмотря на правильные теоретические установки, оставались эмпирическими.

Лечение различных наследственных болезней может включать как традиционные в медицине подходы (лекарственные препараты, специфические диеты, хирургическую коррекцию и др.), так и воздействия на наследственные структуры, «повинные» в развитии болезни. Уровни, на которые направлено терапевтическое воздействие, во многом определяются состоянием знаний о первичном генетическом дефекте, его клинических проявлениях, взаимодействии с факторами среды и пониманием путей, на которых возможно исправление дефекта. Обобщенная схема точек приложения лечебных воздействий приведена на рис. 10.1.

В настоящее время благодаря успехам генетики в целом и существенному прогрессу теоретической и клинической медицины можно

Рис. 10.1. Принципиальная схема «мишеней» для лечения наследственных болезней

утверждать, что уже многие наследственные болезни успешно лечатся. Такая установка должна быть у врача.

Общие подходы к лечению наследственных болезней сходны с подходами к лечению болезней любой другой этиологии. При наследственных болезнях полностью сохраняется принцип индивидуализированного лечения, ведь врач и при наследственной патологии лечит не просто болезнь, а болезнь конкретного человека. Возможно, что при наследственной патологии принцип индивидуализированного лечения должен соблюдаться еще строже, потому что гетерогенность наследственных болезней далеко не расшифрована, а, следовательно, одну и ту же клиническую картину могут вызвать разные наследственные болезни с различным патогенезом. В зависимости от условий пре- и постнатального онтогенеза, а также от всего генотипа человека фенотипические проявления мутаций у конкретного человека могут модифицироваться в ту или другую сторону. Следовательно, необходима разная коррекция наследственной болезни у разных пациентов.

Как и при лечении других хорошо изученных болезней (например, инфекционных), можно выделить 3 подхода к лечению наследственных болезней и болезней с наследственной предрасположенностью: симптоматический, патогенетический, этиотропный. Применительно к наследственным болезням в отдельную группу можно выделить хирургические методы, поскольку иногда они выполняют функции симптоматической терапии, иногда - патогенетической, иногда - и той, и другой.

При симптоматическом и патогенетическом подходах используют все виды современного лечения (лекарственное, диетическое, рентгенорадиологическое, физиотерапевтическое, климатическое и т.д.). Генетический диагноз, клинические данные о состоянии больного и вся динамика болезни определяют поведение врача на протяжении всего периода лечения с постоянным и строгим соблюдением гиппократовского принципа «не навреди». При лечении наследственных болезней надо быть особенно внимательным в соблюдении этических и деонтологических норм: часто такие больные имеют тяжелую хроническую патологию с детского возраста.

СИМПТОМАТИЧЕСКОЕ ЛЕЧЕНИЕ

Хотя неспецифическое лечение не является главным, оно фактически используется всегда, в том числе при лечении пациентов с наследственными болезнями. Симптоматическое лечение применяют

при всех наследственных болезнях, даже если врач располагает методами патогенетической терапии. Для многих форм наследственной патологии симптоматическое лечение остается единственным.

Лекарственная симптоматическая терапия разнообразна и зависит от формы наследственных болезней. Один из древних примеров симптоматической терапии, сохранившейся до наших дней, - применение колхицина при острых приступах подагрического артрита. Такое лечение использовали еще греки в античном периоде. Другими примерами симптоматического лечения могут быть применение анальгетиков при наследственных формах мигрени, специфических транквилизаторов при психических проявлениях наследственных болезней, противосудорожных препаратов при судорожных симптомах и т.д. Успехи этого раздела терапии связаны с прогрессом фармакологии, обеспечивающим все более широкий выбор лекарств. Вместе с тем расшифровка патогенеза каждой болезни позволяет понять причину возникновения симптома, а на этой основе становится возможной более тонкая лекарственная коррекция симптомов, если первичная патогенетическая терапия еще невозможна.

В качестве примера можно привести общую схему многокомпонентного симптоматического лечения муковисцидоза. Первичное звено патогенеза (нарушение транспорта ионов натрия и хлора) скорригировать при этом заболевании еще не удается.

В связи с тем, что у больных выделяется много хлорида натрия с потом, детям с муковисцидозом в жарком сухом климате рекомендуется дополнительно добавлять поваренную соль в пищу. В противном случае иногда может наступить коллапс с тепловым ударом.

Недостаточность функции поджелудочной железы у больных (рано или поздно это наступает) восполняется препаратами сухих экстрактов поджелудочной железы животных или ферментов в капсулах (панкреатин, панзинорм  , фестал  ) и желчегонных средств. При клинических признаках нарушения функции печени проводится курс соответствующей терапии (эссенциале  , метионин, холин и др.).

Наиболее серьезными и трудными для лечения являются нарушения дыхательных путей. Закупорка просветов малых бронхов густой слизью обусловливает развитие инфекции в легочной ткани. На закупорку бронхов и инфекцию направлена симптоматическая (почти патогенетическая) терапия. Для уменьшения обструкции применяют бронхоспазмолитические

и отхаркивающие смеси (изопреналин, эуфиллин  , атропин, эфедрин и др.), препараты муколитического действия, в основном тиолы. Способ введения препарата (в ингаляциях, внутрь, внутримышечно) зависит от выраженности клинической картины. Применяют лекарства, уменьшающие внутриклеточную продукцию слизи, например мукодин  (карбоцистеин). - Лечение воспалительных осложнений в легких при муковисцидозе представляет трудную задачу, поскольку эти осложнения обусловлены несколькими видами бактерий, а иногда и грибов. С этой целью проводят интенсивную микробиологически контролируемую антибиотикотерапию (цефалоспорины третьего поколения и др.), а также лечение фторхинолонами для борьбы с синегнойной инфекцией. Антибиотики выбирают в зависимости от чувствительности микрофлоры. Наибольший эффект дает введение антибиотиков в ингаляциях и парентерально. Как видно на примере лекарственного лечения муковисцидоза, многосимптомные болезни требуют применения нескольких фармакокинетически совместимых лекарств.

Симптоматическое лечение бывает не только лекарственным. Многие виды физических методов лечения (климатотерапия, бальнеолечение, разные виды электротерапии, теплолечение) применяются при наследственных болезнях нервной системы, наследственных болезнях обмена веществ, заболеваниях скелета. После таких курсов лечения больные чувствуют себя намного лучше, продолжительность их жизни увеличивается.

Практически нет таких наследственных болезней, при которых не было бы показано физиотерапевтическое лечение. Например, лекарственное лечение муковисцидоза постоянно подкрепляется многообразными физиотерапевтическими процедурами (ингаляции, массаж и др.).

К симптоматическому можно отнести рентгенорадиологическое лечение при наследственно обусловленных опухолях до и после хирургического вмешательства.

Возможности симптоматического лечения при многих болезнях еще далеко не исчерпаны, особенно это касается лекарственной и диетической терапии.

Следует подчеркнуть, что симптоматическое лечение будет использоваться в большом объеме и в будущем наряду с самым совершенным патогенетическим или даже этиотропным лечением наследственных болезней.

ПАТОГЕНЕТИЧЕСКОЕ ЛЕЧЕНИЕ

Лечение любых болезней путем вмешательства в патогенез всегда эффективнее, чем симптоматическое лечение. При наследственных болезнях патогенетические методы также наиболее обоснованы, хотя и не противопоставляются симптоматическому лечению. По мере изучения патогенеза каждой болезни появляются различные возможности вмешательства в этот процесс, в течение болезни или в выздоровление. Клиническая медицина развивалась на основе теоретических представлений о патологических процессах. Таким же путем идет клиническая генетика в разработке методов лечения.

Для патогенетического лечения наследственных болезней в последние годы применяют принципиально новые подходы, основанные на достижениях молекулярной и биохимической генетики. При описании генных болезней (см. гл. 4) приводились примеры расшифрованных нарушенных звеньев обмена, всех биохимических механизмов, по которым развивается наследственно обусловленный патологический процесс, - от аномального генного продукта до клинической картины болезни. Естественно, что на этой основе можно целенаправленно вмешиваться в патогенез болезни, а такое лечение фактически равнозначно этиотропному. Хотя первопричина (т.е. мутантный ген) и не устраняется, но цепь патологического процесса прерывается, и патологический фенотип (болезнь) не развивается (т.е. происходит нормокопирование).

Патогенетическое лечение должно расширяться по мере прогресса генетики развития. Пока ее вклад в разработку методов лечения наследственной патологии незначителен, хотя успехи последних лет не вызывают сомнений. В настоящее время лечение основано на коррекции отдельных нарушенных звеньев, но более эффективно было бы вмешиваться в патологический процесс на уровне системных реакций.

При патогенетических подходах к лечению наследственных болезней исходят из того, что у больных либо образуется аномальный белок (фермент), либо нормального белка вырабатывается недостаточно (до полного отсутствия). За этими событиями следуют изменения цепи превращения субстрата или его продукта. Знание этих принципов и конкретных путей реализации действия гена помогает правильно разрабатывать схемы лечения и даже терапевтическую стратегию. Это особенно четко можно проследить на примере наследственных болезней обмена веществ.

Рис. 10.2. Возможные подходы к патогенетическому лечению наследственных болезней

В обобщенном (может быть, немного упрощенном) виде возможные подходы к лечению наследственных болезней обмена веществ представлены на рис. 10.2. Видно, что для различных болезней могут быть использованы разные пути коррекции. Для одной и той же болезни можно использовать вмешательства в разных звеньях и на различных этапах развития патологического процесса.

В целом патогенетические подходы к лечению наследственных болезней в зависимости от уровня биохимического дефекта можно представить следующим образом. Лечение схематично сводится к возмещению или выведению чего-либо. Если ген не работает, то необходимо возместить его продукт; если ген производит не то, что

нужно, и образуются токсичные продукты, то необходимо удаление таких продуктов и возмещение основной функции; если ген производит слишком много продукта, то его избыток удаляют.

Коррекция обмена на уровне субстрата

Такое вмешательство - одна из наиболее частых форм лечения наследственных болезней. Коррекцию можно обеспечить разными путями, примеры которых приведены ниже. Субстратом в данном случае называется тот компонент пищи, который подвергается метаболизму с помощью генетически детерминируемого фермента (например, фенилаланин, галактоза), а при наследственной болезни он является участником патологической реакции.

Ограничение определенных веществ в пище (диетическое ограничение) было первой успешной мерой в лечении наследственных болезней обмена, при которых отсутствуют соответствующие ферменты для нормального превращения субстратов в продуктах питания. Накопление некоторых токсичных соединений или продуктов их обмена приводит к постепенному развитию болезни. При фенилкетонурии назначают диету с низким содержанием фенилаланина. Несмотря на отсутствие фенилаланингидроксилазы печени, тем самым прерывается патогенетическое звено развития болезни. Ребенок, находившийся несколько лет на искусственной диете, уже не будет страдать тяжелой формой болезни. Спустя несколько лет, чувствительность нервной системы к фенилаланину и продуктам его превращения резко снижается, и диетическое ограничение может быть уменьшено. Ограничение диеты не обязательно означает составление специального пищевого рациона. Например, новый метод ограничения поступления фенилаланина с пищей при фенилкетонурии основан на приеме внутрь желатиновых капсул, содержащих растительный фермент, который освобождает пищевые продукты от фенилаланина. При таком лечении концентрация фенилаланина в крови уменьшается на 25%. Этот метод особенно целесообразно применять у более взрослых пациентов с фенилкетонурией и беременных, не нуждающихся в строгом соблюдении диеты.

Диетическое ограничение применяется при лечении многих наследственных болезней обмена углеводов и аминокислот (галактоземии, наследственной непереносимости фруктозы и лактозы, аргининемии, цитруллинемии, цистинурии, гистидинемии, метилмалоновой ацидемии, тирозинемии, пропионовой ацидемии) и других

болезней с известным первичным дефектом. Применяются диеты, специфичные для каждого заболевания.

Ограничением определенных веществ в диете можно также лечить болезни, для которых еще не расшифрован дефект первичного продукта гена. Эмпирически установлено, например, что при целиакии (см. гл. 7) постоянные диспепсические явления провоцирует глютен. Для лечения этой болезни достаточно исключить из пищи продукты, содержащие клейковину.

Хотя селективное ограничение определенных веществ в пище широко используется для повышения эффективности лечения некоторых наследственных болезней обмена веществ, остается еще много нерешенных вопросов. Например, несмотря на 35-летний опыт лечения фенилкетонурии, еще не полностью определены оптимальные границы диеты, продолжительность курса лечения для детей, необходимость ограничения при менее тяжелых формах ферментативной недостаточности, принципы индивидуализации диеты. Диетическое ограничение должно проводиться под строгим биохимическим контролем обмена веществ.

Диетическое добавление применяется реже, чем ограничение, но этот прием также эффективен при патогенетическом лечении и вошел в практику лечения двух болезней обмена.

При синдроме Хартнапа в результате дефекта транспортной функции клеток слизистой оболочки кишечника возникает мальабсорбция триптофана. Биохимическим следствием этого становится отсутствие триптофана в крови, гипераминоацидоз, эндогенный дефицит никотиновой кислоты. У пациентов наблюдаются дерматологические, неврологические и психические проявления пеллагры. Симптомы болезни уменьшаются или даже исчезают при введении в рацион ребенка продуктов с высоким содержанием белка (4 г/кг в сутки) и добавлении никотинамида или никотиновой кислоты (по 40-200 мг 4 раза в сутки).

Особенно убедительный аргумент в пользу лечения наследственных болезней с помощью диетического добавления дает лечение гликогеноза III типа (амило-1,6-глюкозидазная недостаточность). Это заболевание сопровождается гепатоспленомегалией, гипогликемией натощак, прогрессирующей миопатией, мышечной атрофией, кардиомиопатией в результате нарушения аланиноглюкозного цикла (низкая концентрация аланина). Это приводит к распаду аминокислот в мышцах при глюконеогенезе. У большинства больных детей наступает улучшение, если белки обеспечивают 20-25% энергетической ценности пищи, а углеводы - не более 40-50%.

Усиленное выведение субстрата патологической реакции может осуществляться разными методами, которые снижают концентрацию токсичного субстрата. Полного освобождения от патологических продуктов обмена добиться трудно. Примером усиленного выведения субстрата является влияние хелатов при гепатолентикулярной дегенерации. Например, пеницилламин связывает, мобилизует и ускоряет выведение внутриклеточно накопленных ионов меди.

При гемоглобинопатиях необходимо усиленное выведение железа, чтобы не развивался гемосидероз паренхиматозных органов.

Применяемый для этих целей дефероксамин (десферал *) накапливает ферритины и освобождает организм от излишнего железа.

Можно эффективно применять и непрямые метаболические пути для выведения субстрата. Например, нормальный уровень мочевой кислоты в крови можно обеспечить выведением остаточного азота в форме не только мочевины, но и ее метаболитов. Такой прием применяется для лечения наследственных болезней, обусловленных многими энзимопатиями цикла мочевины. Подобные примеры известны и для других форм наследственных болезней обмена веществ.

Выше были приведены примеры усиленной элиминации субстратов с помощью лекарств. Этих же целей можно добиться с помощью физико-химических методов освобождения от накопленного в крови субстрата (плазмафереза и гемосорбции).

С помощью плазмафереза удаляется большой объем плазмы, содержащей токсичное вещество. Плазмаферез можно применять для освобождения крови от излишка липидов, жирных кислот, фитановой кислоты. Этот метод эффективно используется при лечении болезни Рефсума. Сделаны первые успешные попытки лечения плазмаферезом двух лизосомных болезней накопления - болезни Фабри и болезни Гоше.

Гемосорбция помогает селективно удалять вещества или классы веществ путем их связывания с родственными лигандами. Этот метод уже применяется для лечения семейной гиперхолестеринемии. В качестве лиганда для экстракорпорального связывания ЛПНП используют гепарин-агарозу, что, к сожалению, дает кратковременный эффект. Уровень холестерина возвращается к исходному через 3-7 сут после лечения.

Альтернативные пути обмена при лечении наследственных болезней приведены в табл. 10.1.

Таблица 10.1. Альтернативные пути обмена при лечении наследственных болезней

Указанный способ лечения во многом сходен с методами усиленного выведения субстрата. Разница заключается только в способах достижения цели: в одном случае усиленно выводится непосредственно субстрат, а в другом - субстрат сначала превращается в какое-то соединение, а затем это соединение удаляется.

Метаболическая ингибиция используется тогда, когда надо затормозить синтез накапливаемого при наследственной болезни субстрата или его предшественника. В качестве ингибиторов применяют разные физиологически активные соединения. Например, при синдроме Леша-Найхана и подагре используют аллопуринол, который ингибирует ксантиноксидазу, благодаря чему уменьшается концентрация мочевой кислоты в крови. Ципрофибрат ингибирует синтез

глицеридов и поэтому эффективно снижает концентрацию липидов у пациентов с гиперхолестеринемией (тип III). Стрихнин конкурирует в связывании глицина с рецепторами в ЦНС, что улучшает дыхательную и моторную функции, угнетение которых вызвано высоким содержанием глицина в спинномозговой жидкости при тяжелой некетоновой гиперглицинемии.

Коррекция обмена на уровне продукта гена

Этот подход применяется уже давно, поскольку во многих случаях в клинической медицине для некоторых болезней была установлена патогенетически ключевая роль отсутствия некоторых веществ (инсулина, гормонов роста, антигемофильного глобулина и др.).

Возмещение продукта (или добавление) с целью коррекции обмена применяется при таких нарушениях, патогенез которых обусловлен аномальным ферментом, не обеспечивающим выработку продукта, или другим биологически активным соединением.

Примеров эффективных подходов к «исправлению» наследственных нарушений обмена путем возмещения продукта уже много: введение необходимых стероидов при врожденной гиперплазии надпочечников, тироксина при гипотиреоидизме, гормона роста при гипофизарной карликовости, уридина при оротовой ацидурии. К сожалению, пока еще нет примеров возмещения внутриклеточных белков, хотя попытки в этом направлении предпринимались (например, при лечении лизосомных болезней).

Подобные примеры известны не только для нарушений обмена, но и для других наследственных болезней. Так, введение антигемофильного глобулина предупреждает кровоточивость при гемофилии, γ-глобулин помогает при агаммаглобулинемии, инсулин - при диабете.

При энтеропатическом акродерматите развивается недостаточность цинка из-за дефекта цинксвязывающего фактора в кишечнике. В этом случае состояние больных одинаково улучшают и введение грудного молока, содержащего цинксвязывающий фактор, и прием препаратов цинка внутрь. Как только концентрация цинка в крови достигает нормального уровня, состояние больных сразу улучшается.

Для лечения по принципу возмещения продукта надо знать тонкие механизмы патогенеза и вмешиваться в эти механизмы (возмещать продукт) осторожно и внимательно. Так, предварительные попытки лечения болезни Менкеса путем возмещения меди не при-

вели к успеху, хотя концентрация меди и церулоплазмина в крови больных достигала нормального уровня. Оказалось, что дефект при данной болезни обусловлен нарушением регуляции синтеза медьсвязывающего белка, обеспечивающего внутриклеточное содержание меди. По этой причине препараты меди не улучшали состояние больных.

Необходимость знания тонких механизмов обмена для лечения можно показать на примере сцепленной с Х-хромосомой гипофосфатемии. При этом заболевании первичный почечный дефект всасывания фосфата ведет к нарушению (снижению) минерализации костей (рахит) и гипокальциемии. Прием внутрь фосфата и 1,25- дигидроксихолекальциферола улучшает минерализацию костей и уменьшает гипокальциемию, но не изменяет первичного дефекта потери фосфата с мочой. В связи с этим имеется большая опасность возникновения гиперкальциемии, а значит, в процессе лечения надо контролировать содержание кальция в крови.

В целом можно ожидать дальнейших сдвигов в патогенетическом лечении путем возмещения продуктов (белков, гормонов) в связи с успехами физико-химической биологии, генной инженерии и биотехнологии. Генно-инженерными методами уже получают специфические белки и гормоны человека, необходимые для восполнения нарушенного звена обмена при лечении наследственных болезней (инсулин, соматотропин, ИФН и др.).

Хорошо известны успехи в получении и разведении трансгенных лабораторных животных. Хотя технически создание трансгенных сельскохозяйственных животных намного труднее, чем лабораторных, это решаемая задача. От крупных животных можно получить большое количество белка. Трансгенных животных, чьи клетки производят нужные белки, можно называть биореакторами. От них можно получать потомство, т.е. возможно воспроизводство из поколения в поколение.

Создание трансгенных животных начинается со сшивки двух генов, каждый из которых клонирован отдельно. Один ген кодирует нужный белок, другой взят из железы или другого органа, который будет производить этот белок. Например, если белок продуцируется с молоком, то специфическими органными генами будут гены из молочной железы.

Гибридная ДНК инъецируется в оплодотворенную яйцеклетку или в эмбрион. Примерно в 1-5% случаев ДНК встраивается

Рис. 10.3. Трансгенная свинья, которая продуцирует гемоглобин человека

Рис. 10.4. Трансгенный бык с геном человеческого лактоферрина. От него получены телята с таким же геном

в геном. Все яйцеклетки подсаживают в матку самок, а родившихся животных проверяют на присутствие гибридного гена. От животного-основателя получают потомство и таким образом создают стадо.

Один из примеров живых биореакторов - свинья, продуцирующая человеческий гемоглобин (рис. 10.3). Она «сконструирована» в 1991 г. Около 15% эритроцитов свиньи содержат человеческий гемоглобин. Его

можно отделить от свиного гемоглобина с помощью препаративных методов. Такой гемоглобин не содержит вирусы человека, хотя в отдельных случаях не исключаются аллергические реакции.

Другим трансгенным животным стала корова, которая производит человеческий лактоферрин, выделяемый с молоком. В результате подсадки трансгенной яйцеклетки родился бык (рис. 10.4), ставший отцом многих трансгенных телок, в последующем производящих лактоферрин с молоком.

Рис. 10.5. Трансгенная коза, в молоке которой содержится плазминогенный активатор (тромболитический фермент)

Получены и другие трансгенные животные. Трансгенная коза (рис. 10.5) выделяет с молоком активатор плазминогена, который растворяет тромбы, трансгенные кролики - фермент α-глюкозидазу для лечения болезни Помпе, трансгенные куры несут яйца с человеческими антителами.

В последние годы отечественные ученые разработали менее долгий и недорогой способ трансгеноза органов-мишеней. Необходимый ген вводят не в яйцеклетку, а непосредственно в молочную железу. Трансген у таких животных присутствует только в вымени. Получены соматические трансгенные коровы, свиньи и козы, служащие биореакторами для фармацевтической промышленности.

Коррекция обмена на уровне ферментов

Многоступенчатый путь превращения субстрата в процессе обмена осуществляется с помощью соответствующих ферментов. Большая группа наследственных болезней обусловлена мутациями в генах, детерминирующих синтез ферментов (энзимопатии). Вмешательство в развитие болезни (коррекция) на уровне фермента является примером патогенетического лечения первичных этапов, т.е. приближающегося к этиотропному лечению. Этот вид лечения применяется для коррекции наследственных болезней обмена веществ, при которых известен функционально аномальный фермент. Для такого лечения можно вводить кофактор или индуцировать (угнетать) синтез фермента с помощью лекарств либо возмещать недостаток фермента.

Введение кофактора используется при многих наследственных болезнях. Как известно, некоторые врожденные аномалии обмена связаны с нарушением синтеза или транспортировки специфических кофакторов, что изменяет нормальную каталитическую активность фермента. В этих случаях добавление соответствующего кофактора повышает активность фермента и в значительной мере исправляет метаболический дефект. Показано, что при витаминозависимых состояниях повышение остаточной активности мутантных ферментных комплексов обеспечивает не только биохимическое, но и клиническое улучшение состояния. Известны многочисленные примеры лечения наследственных болезней путем добавления кофакторов, далеко не исчерпывающая классификация которых представлена в табл. 10.2.

Таблица 10.2. Нарушения обмена, при лечении которых добавляют кофактор

Из таблицы 10.2 видно, что при лечении наследственных болезней один и тот же кофактор может выполнять разные функции. По-видимому, будет перспективным введение кофактора для внутриутробного лечения плода (как в случае β-зависимой метилмалоновой ацидемии).

Модификация ферментативной активности

Это уже сложившийся подход при лечении наследственных болезней обмена. Стратегия такого лечения отражена в табл. 10.3, в которой приведены отдельные примеры.

Таблица 10.3. Лечение наследственных болезней путем модификации ферментативной активности

Окончание таблицы 10.3

Индукцию синтеза фермента можно использовать для повышения остаточной ферментативной активности путем введения лекарств. Например, фенобарбитал и родственные ему препараты стимулируют функцию эндоплазматического ретикулума и синтез специфичных для него ферментов. В связи с этим фенобарбитал применяют для лечения синдромов Жильбера и Криглера-Найяра. При этом снижается уровень билирубина в плазме крови. Такой подход имеет определенное значение при болезнях, обусловленных недостаточной продукцией ферментов, вырабатываемых в эндоплазматическом ретикулуме.

Индукция синтеза ферментов с помощью даназола (дериват этинилтестостерона) применена для лечения недостаточности α 1 -антитрипсина и ангионевротического отека. При недостаточности α 1 -антитрипсина применение даназола в течение 30 дней существенно повышает уровень этого белка в сыворотке. Таким образом, данный метод можно использовать для предупреждения легочных осложнений.

Ангионевротический отек сопровождается снижением количества функционально активного сывороточного ингибитора эстеразы С на 50%. Применение андрогенов повышает в 3-5 раз уровень ингибитора эстеразы. Профилактический прием внутрь даназола снижает или предупреждает острый ангионевротический отек, оказывает минимальную вирилизацию и связан с наименьшей токсичностью для печени.

Подавление синтеза фермента используют для лечения острых порфирий, биохимическая основа которых заключается в повышенной выработке аминолевулинатсинтетазы. Гематин подавляет синтез этого фермента и быстро снимает острые приступы порфирии.

Возмещение фермента

Успехи современной энзимологии позволяют выделить этот раздел в патогенетическом лечении наследственных болезней. Это вмешательство на уровне первичного белкового продукта гена. Современные методы позволяют получить такое количество активного фермента для экспериментальных и клинических целей, которое необходимо для его восполнения при определенных наследственных болезнях. Выше разбирались случаи возмещающей терапии: гормоны при эндокринопатиях, антигемофильный глобулин при гемофилии, γ-глобулин при агаммаглобулинемии. По такому же принципу точного соответствия недостающего продукта строится стратегия ферментотерапии.

Главный вопрос современных разработок в области ферментотерапии - это методы доставки фермента в клетки-мишени и субклеточные образования, вовлеченные в патологию обмена.

Рабочая гипотеза экзогенного введения фермента основывалась на том, что лизосомы часто являются местом патологического процесса и в то же время играют основную роль в клеточном метаболизме. Возможность доставки ферментов в лизосомы, сохранение их активности в клетке и взаимодействие с субстратом были проверены в опытах с культурами фибробластов, полученных от лиц с различными лизосомными болезнями накопления. Ферменты, введенные в культуральную среду, улучшали обмен соответствующего соединения. Такая коррекция продемонстрирована при различных гликосфинголипидозах, мукополисахаридозах, гликогенозах и гликопротеинозах. Опыты показали, что возможно возмещение фермента, который проникает внутрь клетки, достигает лизосом и нормализует превращение субстрата. Однако внутримышечное, внутривенное и внутритрахеальное введение ферментов, полученных из грибов или органов крупного рогатого скота, ослабленным больным с гликогенозом, мукополисахаридозами, метахроматической лейкодистрофией и болезнью Фабри не дало серьезных положительных результатов. Следовательно, в стратегии ферментотерапии надо было определить основные направления, которые в суммарном виде представлены ниже.

Возможность получения достаточного количества стабильных, неиммуногенных и стерильных ферментов с высокой специфической активностью.

Защита введенной активности от биотрансформации и иммунного надзора, а также доставка фермента в ткань-мишень и субклеточные образования, вовлеченные в патологический процесс.

Модельная проверка на млекопитающих для оценки и выбора наилучшей стратегии ферментотерапии.

Соответствующим образом запланированные и разрешенные биохимические и клинические испытания на больных.

В 70-х годах XX в. была показана возможность получения ферментов из тканей человека и разработаны системы наблюдения за судьбой ферментов в организме млекопитающих. Первые клинические испытания были проведены при различных лизосомных нарушениях. Это были GМ2-ганглиозидоз (β-гексозаминидаза А из мочи), гликогеноз II типа (плацентарная α-галактозидаза), болезнь Фабри (плацентарная α-галактозидаза), болезнь Гоше (плацентарная β-глюкозидаза). Перед клиническим испытанием было установлено, что высокоочищенные ферменты человека гидролизируют естественный субстрат. Проверка показала, что ферменты при внутривенном или подкожном введении обнаруживаются в печеночной ткани. При этом концентрация ферментов в крови уменьшается, а в печени повышается. Однако они не проникают в мозг из-за барьерных функций мозговых оболочек. Отсюда следует вывод о необходимости специфической доставки ферментов в клетки-мишени при каждой болезни. Их доставка в разные клеточные структуры может потребовать специфической очистки или какой-либо химической модификации фермента.

В разработке методов лечения наследственных болезней ферментами в первую очередь надо ориентироваться на патогенетические механизмы болезней: в каких клетках, каким путем и в какой форме откладывается субстрат реакции, с одной стороны, и каким путем фермент в норме достигает субстрата, каковы промежуточные стадии обмена - с другой. Именно вмешательство в патофизиологический механизм, ответственный за синтез, распределение и накопление субстрата, можно использовать с терапевтической целью: в одних случаях надо увеличить время циркуляции фермента в крови, в других - способствовать доставке фермента в строго определенные клетки.

Из анализа первичной клеточной патологии при различных лизосомных болезнях накопления видно, что даже близкие по сути заболевания отличаются друг от друга.

Первичный дефект локализуется в нейронах (сфинголипидозы, гликопротеинозы), в клетках ретикулоэндотелиальной системы (болезнь Нимана-Пика, болезнь Гоше), эндотелии, шванновских клетках, поперечно-полосатой мускулатуре.

Экспериментальные разработки в области ферментотерапии наследственных болезней позволили объективно оценивать захват молекул фермента рецепторами, гепатоцитами, клетками ретикулоэндотелиальной системы, фибробластами, клетками эндотелия сосудов и т.д. Это увеличило возможности направленных разработок лечения наследственных болезней, в первую очередь с использованием новых методов доставки ферментов к клеткам-мишеням в синтетических пузырьках-носителях или микрокапсулах-липосомах либо в естественных элементах - аутологичных эритроцитах. Такие методы доставки разрабатываются для лечения не только наследственных болезней, но и другой патологии. Направленная доставка лекарственных веществ в органы, ткани и клетки - актуальная проблема для медицины в целом.

Современные успехи физико-химической биологии позволяют создавать новые формы микроинкапсулированных ферментных препаратов (опосредованная доставка) или обеспечивать более полный захват циркулирующего в крови фермента рецепторами клетокмишеней (опосредованная рецепция).

Липосома представляет собой многослойный пузырек с чередующимися водными и липидными слоями. При формировании липосом можно изменять заряд стенки, их величину, число слоев. К мембране липосом можно пришить антитела к клеткам-мишеням, что обеспечит более точную доставку липосом. Липосомы, нагруженные ферментами, при различных путях введения хорошо захватываются клетками. Их липидная оболочка разрушается эндогенной липазой, а освободившийся фермент взаимодействует с субстратом.

Наряду с созданием искусственных носителей - липосом - разрабатывают методы нагрузки эритроцитов ферментами. При этом можно использовать гомологичные или даже аутологичные эритроциты. Нагрузка ферментами может осуществляться путем гипотонизации, или диализа, или с помощью хлорпромазининдуцированного эндоцитоза.

Перспективы лечения наследственных болезней возмещением ферментов зависят от успехов энзимологии, клеточной инженерии, физико-химической биологии. Новые подходы должны обеспечить выделение высокоочищенных ферментов из специфических тканей человека, введение их в активной форме в клетку путем опосредованной рецепции или опосредованной доставки, предупреждение биоинактивации, исключение иммунных реакций. Уже имеются подходы к решению каждой из этих задач, поэтому можно надеяться на еще более успешное развитие ферментотерапии наследственных болезней.

ХИРУРГИЧЕСКОЕ ЛЕЧЕНИЕ

Хирургическое лечение наследственных болезней занимает существенное место в системе медицинской помощи больным. Это связано с тем, что, во-первых, многие формы наследственной патологии сопровождаются морфогенетическими отклонениями, включая пороки развития. Во-вторых, расширение возможностей хирургической техники сделало доступными многие трудные операции. В-третьих, реанимация и интенсивная терапия сохраняют жизнь новорожденным с наследственными болезнями, а такие пациенты нуждаются в последующей хирургической помощи.

Хирургическая помощь больным с наследственной патологией в общем виде включает удаление, коррекцию, трансплантацию. Операции часто направлены на устранение симптомов болезни. Однако в некоторых случаях хирургическая помощь выходит за рамки симптоматического лечения, приближаясь по эффекту к патогенетическому лечению. Например, для изменения пути патологического превращения субстратов патологических реакций можно использовать хирургическое шунтирование. При гликогенозах I и III типов делают анастомоз между воротной и нижней полой венами. Это позволяет части глюкозы после всасывания в кишечнике обходить печень и не откладываться в ней в виде гликогена. Аналогичный обходной путь предложен при семейной гиперхолестеринемии (тип IIа) - анастомоз между тощей и подвздошной кишками. Это приводит к снижению всасывания холестерина.

Примерами общехирургических видов лечения могут быть операция по поводу наследственного полипоза толстой кишки (ее удаление), спленэктомия при гемоглобинопатиях, удаление глаза при

ретинобластоме, почки при опухоли Вильмса и др. В ряде случаев хирургическое лечение является частью комплексной терапии. Например, при муковисцидозе возможен мекониальный илеус у новорожденных, в процессе развития болезни встречается пневмоторакс. И то и другое устраняется хирургическим путем.

Большое место в лечении наследственных болезней занимает реконструктивная хирургия: при незаращении верхней губы, врожденных пороках сердца, атрезии отделов ЖКТ, гипоспадии, для коррекции костно-мышечной системы и т.д.

Трансплантация органов и тканей как метод лечения наследственных болезней все больше входит в практику. Аллотрансплантация может рассматриваться как передача нормальной генетической информации пациенту с нарушением обмена веществ. Такой подход предполагает пересадку клеток, тканей и органов, содержащих нормальную ДНК, для продукции активных ферментов или других продуктов гена у реципиента. Он особенно эффективен тогда, когда патологический процесс ограничен одним органом или тканью, которые и пересаживают.

Аллотрансплантация уже выполняется при разных наследственных болезнях и позволяет непрерывно восполнять недостаток фермента, гормона, иммунных функций или эффективно предохранять орган от функциональных нарушений, обусловленных мутацией структурного гена. В таблице 10.4 перечислены наследственные болезни, при которых применяется аллотрансплантация.

Таблица 10.4. Применение аллотрансплантации для патогенетического лечения наследственных болезней

Окончание таблицы 10.4

Современная трансплантология обладает большими возможностями, и ее успехи можно использовать в лечении наследственных болезней. Имеются многочисленные сообщения об успешных пересадках органов (костного мозга, вилочковой железы, печени плода, донорской печени, поджелудочной железы, селезенки и особенно почки) при упомянутых в табл. 10.4 состояниях. Трансплантация исправляет патологические механизмы наследственных нарушений.

Помимо пересадки органов разрабатываются методы пересадки клеток, функция которых занимает ключевое место в патогенезе наследственных нарушений обмена. Лечение стволовыми клетками будет рассмотрено ниже.

В заключение следует обратить внимание на огромные возможности хирургического лечения наследственных болезней, используемые еще не в полной мере. В этом плане весьма перспективны микрохирургия и эндоскопическая хирургия.

ЭТИОТРОПНОЕ ЛЕЧЕНИЕ: КЛЕТОЧНАЯ И ГЕННАЯ ТЕРАПИЯ

Введение

Этиотропное лечение любых болезней оптимально, поскольку оно устраняет первопричину заболевания и в результате полностью его излечивает. Несмотря на успехи симптоматической и патогенетической терапии наследственных болезней, вопрос об их этиотропном лечении не снимается. Чем глубже будут знания в области теорети-

ческой биологии, тем чаще будет подниматься вопрос о радикальном лечении наследственных болезней.

Однако устранение причины наследственной болезни означает такие серьезные манипуляции с генетической информацией у человека, как доставка нормального гена в клетку, выключение мутантного гена, обратная мутация патологического аллеля. Эти задачи достаточно трудны даже при вмешательствах у простейших организмов. К тому же, чтобы провести этиотропное лечение какой-либо наследственной болезни, надо изменить структуру ДНК и не в одной клетке, а во многих функционирующих клетках (и только в функционирующих!). Прежде всего, для этого нужно знать, какое изменение произошло в гене в результате мутации, т.е. наследственная болезнь должна быть описана в химических формулах.

Сложности этиотропного лечения наследственных болезней очевидны, но уже имеются многочисленные возможности для их преодоления, создаваемые успешной расшифровкой генома человека и прогрессом молекулярной медицины.

Несколько принципиальных открытий в генетике и молекулярной биологии создали предпосылки для разработки и клинической проверки методов этиотропного лечения наследственных болезней (генная и клеточная терапия).

В экспериментах с РНК- и ДНК-содержащими вирусами опухолей (начало 1970-х годов) выявлена способность вирусов переносить гены в трансформированные клетки и сформулирована концепция использования вирусов как переносчиков генов, другими словами, концепция создания векторной системы (рекомбинантная ДНК). Успех, достигнутый в экспериментах с рекомбинантной ДНК, уже к середине 1970-х годов обеспечил почти неограниченные возможности в изоляции генов эукариот (в том числе и человека) и манипуляции с ними. В начале 80-х годов была доказана высокая эффективность переноса генов на основе векторных систем в клетки млекопитающих in vitro и in vivo.

Принципиальные вопросы генной терапии у человека решены. Во-первых, гены можно изолировать вместе с фланкирующими (пограничными) областями, содержащими в себе, по меньшей мере, важные регуляторные последовательности. Во-вторых, изолированные гены нетрудно встроить в чужеродные клетки. «Хирургия» трансплантации генов многообразна.

Условия генной терапии разрабатывались удивительно быстро. Первый протокол генной терапии у человека был составлен в 1987 г. и проверен в 1989 г., а с 1990 г. уже началась генная терапия больных.

Этиотропное лечение наследственных болезней может осуществляться на уровне клеток или генов. Организм больного должен получить дополнительную генетическую информацию, способную исправлять наследственный дефект, с геномом аллогенной клетки или в виде специально созданной генно-инженерной конструкции.

Под термином «клеточная терапия» понимают способ лечения путем трансплантации клеток. Пересаженные клетки сохраняют генотип донора, поэтому пересадку можно рассматривать как форму генотерапии, поскольку она приводит к изменению соматического генома. Генная терапия - способ лечения путем введения дополнительной генетической информации в клетки индивида на уровне ДНК или РНК (генно-инженерных конструкций) или путем изменения экспрессии генов.

В целом, к настоящему времени определились четыре направления этиотропного лечения:

Трансплантация аллогенных клеток (клеточная терапия);

Введение генно-инженерных конструкций в ткани больного (генная терапия);

Трансплантация трансгенных клеток с целевой генно-инженерной конструкцией (комбинированная терапия);

Изменение экспрессии генов (генная терапия).

Клеточная терапия

Трансплантация клеток или клеточная терапия - это в настоящее время часть бурно развивающейся регенеративной медицины. Применительно к лечению наследственных болезней речь идет о трансплантации аллогенных клеток, потому что аутологичная пересадка не изменяет мутантного генома клеток. Наиболее эффективных результатов клеточной терапии можно добиться при трансплантации стволовых клеток. Они обладают способностью размножаться в недифференцированном состоянии, а другая их часть дифференцируется в клетки патологически измененного органа, улучшая его функцию. Что такое стволовые клетки, где они находятся, каковы их разновидности и функции см. в книге «Биология стволовых клеток и клеточные технологии в 2 т.» под ред. М.А. Пальцева.

Источники стволовых клеток представлены в табл. 10.5.

Таблица 10.5. Типы стволовых клеток, применяемых для лечения наслед ственных болезней

Первым по времени применения и объему проведенных клеточных трансплантаций является костный мозг и полученные при его культивировании гемопоэтические стволовые клетки, а также мультипотентные мезенхимальные стромальные клетки. В конце 60-х годов прошлого века впервые для лечения первичных иммунодефицитов применили трансплантацию костного мозга. В последние годы в качестве источника гемопоэтических стволовых и мезенхимальных стромальных клеток используется и пуповинная кровь.

Печень эмбрионов - хороший источник стволовых клеток печеночной и непеченочной (после культивирования) дифференцировки. Клеточная фракция эмбриональной печени после трансплантации в организм реципиента выполняет функции печени, что особенно важно в экстренных случаях поражения печени.

Поперечно-полосатые мышцы в культуре образуют миобласты, миоциты, мезангиобласты, которые обладают способностью к самовоспроизведению и дифференцировке в обратном направлении в поперечно-полосатые мышечные клетки.

Трансплантация гемопоэтических стволовых клеток применяется как эффективная терапия наследственных болезней обмена, главным образом лизосомных болезней накопления и пероксисомных. Всего в мире сделано около 1000 трансплантаций при более чем 20 болезнях. Лечение трансплантацией гемопоэтических стволовых клеток при

наследственных болезнях обмена основано на выработке недостающих в организме ферментов за счет функционирования донорских клеток. Из всех клинических проколов по более чем 20 болезням только по трем формам получены убедительные результаты, позволяющие рекомендовать трансплантацию таких клеток как метод лечения. Это синдром Гурлер, Х-сцепленная адренолейкодистрофия и болезнь Краббе (глобоидноклеточная лейкодистрофия). Для этих форм отработаны условия кондиционирования, претрансплантационная терапия, строгие показания, возраст детей.

Большой раздел в клеточной терапии занимают болезни крови и кроветворных органов, ассоциированных с недостаточностью продуктов костного мозга. Важнейшим условием является подбор доноров по HLA-антигенам, чтобы снизить реакцию «трансплантат против хозяина». Не останавливаясь на технической стороне клеточной терапии, перечислим болезни, которые уже лечат гемопоэтическими стволовыми клетками. При этом не исключаются другие виды лечения. Трансплантацию гемопоэтических стволовых клеток используют при лечении следующих болезней: анемии Фанкони, первичных иммунодефицитов, гемоглобинопатий. Переливание моноцитарных фракций костного мозга дает худшие результаты из-за большей антигенности зрелых клеток по сравнению с гемопоэтическими стволовыми.

Более 15 лет назад клеточная терапия была применена для лечения наследственных заболеваний костей - ахондроплазии и несовершенного остеогенеза. Трансплантировали мезенхимальные стромальные клетки, полученные из костного мозга. Лечение было направлено на усиление роста костей. И действительно, применение мезенхимальных стромальных клеток давало эффект ускоренного удлинения костей при дистракционном остеогенезе при ахондроплазии и существенное прибавление в росте у больных с несовершенным остеогенезом.

Для клеточной терапии заболеваний нервной системы имеется много источников стволовых клеток: из нервной системы, жировой ткани, костного мозга и др. Мезенхимальные стромальные клетки костного мозга могут дифференцироваться в нейтральные стволовые клетки. Хотя и проводятся многочисленные экспериментальные разработки, обосновываются новые подходы, проверяются новые клинические протоколы лечения больных стволовыми клетками таких сложных по патогенезу болезней, как болезнь Альцгеймера, хорея Гентингтона, болезнь Паркинсона, миопатия Дюшенна, пока одно-

значных результатов лечения не получено. Все клинические протоколы клеточной терапии нервной системы являются первичными проверками на токсичность и биобезопасность.

Эффективность лечения стволовыми клетками, как правило, невысокая, и терапевтический эффект сохраняется лишь первые 6 мес, поэтому клеточная терапия должна рассматриваться как дополнительный, а не основной метод лечения. Важным методом лечения является сочетание клеточной терапии с лекарственной, особенно ферментативной, для наследственных болезней обмена. Впереди еще много работы по доведению первых результатов до эффективных и безопасных методов лечения. Несмотря на многочисленные клинические исследования клеточной терапии, утвержденных протоколов лечения для конкретных нозологических форм еще нет (тип клеток, количество, способ введения клеток, сроки повторного введения).

Генная терапия

Генная терапия путем введения генно-инженерных конструкций в клетки и ткани больного (трансгеноз in vivo) может стимулировать рост ткани, функцию органа. В этом типе терапии создаются функционально способные генетические конструкции (генетический вектор) в лабораторных условиях. Эти конструкции должны включать целевой ген (или его главную часть), вектор, промотор

(рис. 10.6).

Рис. 10.6. Карта генетической конструкции (плазмиды pAng1) с геном ангиогенина. Обозначения: Ang - кДНК гена ангиогенина; PrCMV - немедленно ранний промотор/энхан- сер цитомегаловируса; PrSV40 - ранний промотор/ориджин вируса SV40; BGH polyA - сигнал полиаденилирования гена гормона роста быка; SV40 polyA - поздний сигнал полиаденилирования вируса SV40; neo r - ген устойчивости к неомицину; amp r - ген устойчивости к ампициллину; ori - ориджин репликации (f1 - фага f1; ColE1 - плазмиды ColE1)

Генная терапия в представленном виде испытывалась главным образом для лечения сердечнососудистых заболеваний: ишемической болезни сердца и хронической ишемии нижних конечностей.

Хотя ангиогенез осуществляется целой группой генов (около

12), выбраны два наиболее критичных целевых гена для проверки эффективности генной терапии. При ишемической болезни сердца (в остром и хроническом состояниях) применяли введение гена VEGF (эндотелиального фактора роста сосудов).

Генный препарат на основе плазмидной конструкции, содержащий ген VEGF165 человека, вводится на заключительном этапе операций (аортокоронарного шунтирования, трансмиокардиальной лазерной реваскуляризации, миниинвазивной реваскуляризации миокарда) в зону, нуждающуюся в неоангиогенезе. У всех больных зарегистрировали клиническое улучшение: отмечен переход в более благоприятный класс стенокардии напряжения, снизилась доза применяемых нитропрепаратов; проба с физической нагрузкой выявляла возрастание порога толерантности; все больные отмечали улучшение качества жизни. При сцинтиграфии отмечалось уменьшение общей площади, а также выраженности дефектов накопления радиофармпрепарата по сравнению с дооперационной картиной.

Проведено лечение нескольких тысяч больных с ишемической болезнью сердца на разных стадиях. Процедура введения генетических конструкций в миокард безопасна. Положительный эффект генотерапии отмечается в большинстве клинических исследований, но он небольшой (8-10%).

Терапевтический ангиогенез в лечении критической ишемии нижних конечностей осуществлялся разными авторами с помощью введения в мышцы голени и бедра нативной ДНК, кодирующей белок VEGF, ген FGF (фактора роста фибробластов), рекомбинантные конструкции на основе разных аденовирусов с геном ангиогенина - ANG.

В нашем исследовании пациентам вводили генно-инженерные конструкции с геном ANG путем прямых внутримышечных инъекций в тибиальную группу мышц пораженной конечности троекратно в равных дозах (3х10 9 бляшкообразующих единиц) с интервалом 3 сут. Каждая процедура включала 4-5 прямых внутримышечных инъекций по 0,3-0,5 мл раствора, равномерно распределенных на площади 15-20х5-6 см. Результаты лечения оценивали через 6-24 мес.

В клинических наблюдениях во всех случаях отмечался положительный эффект: увеличился показатель времени (расстояния) безболевой ходьбы, увеличился показатель плечелодыжечного индекса, уменьшились или даже зажили трофические язвы, увеличилась перфузия мышц нижних конечностей.

Данные литературы и наши наблюдения свидетельствуют о том, что позитивный эффект сохраняется в течение 6-18 мес, после чего возникает потребность в повторных инъекциях препарата. Таким образом, генно-инженерные конструкции, содержащие гены ANG и VEGF, способствуют выработке факторов неоангиогенеза и стимулируют рост кровеносных сосудов в ишемизированных тканях. О состоянии, проблемах и перспективах генной терапии см. в одноименной статье А.В. Киселева с соавт. на компакт-диске.

Лечение трансгенными клетками

Лечение трансгенными клетками с целевой генно-инженерной конструкцией может быть названо комбинированной терапией. Для осуществления этого типа клеточно-генной терапии необходимо осуществить введение целевого гена в клетку. Такая комбинация сочетает свойства клеточного вектора, генной функции и эффект клеточной терапии.

Трансгеноз (перенос генетического материала) in vitro направлен на соматические клетки-мишени, заранее выделенные из организма (например, резецированная печень, культура лимфоцитов, костный мозг, культура фибробластов, опухолевые клетки). Для введения ДНК в клетки млекопитающих уже опробованы многие подходы: химические (микропреципитаты фосфата кальция, DEAE-декстран, диметилсульфоксид); слияние клеток (микроклеток, протопластов); физические (микроинъекции, электропорация, лазерная микроинъекция); вирусные (ретровирусы, аденовирусы, аденоассоциированные вирусы). Многие невирусные методы малоэффективны (за исключением электропорации и лазерной микроинъекции). Наиболее эффективными переносчиками ДНК в клетки являются «природные шприцы» - вирусы.

Процедура трансгеноза клеток должна заканчиваться проверкой ее успешности. Трансгеноз можно считать успешным, если не менее 5% всех обработанных клеток будут иметь введенный генетический материал.

Конечная процедура генной терапии через трансгеноз соматических клеток in vitro - это реимплантация трансгенных клетокмишеней. Она может быть органотропной (печеночные клетки вводят через воротную вену) или эктопической (клетки костного мозга вводят через периферическую вену).

Клеточно-генная терапия была принята в клинической практике быстрее, чем можно было ожидать. Варианты ее применения можно показать на примере трех болезней.

Недостаточность ADA. Девочка 4 лет (США) страдала редкой наследственной болезнью - первичным иммунодефицитом (тяжелая комбинированная форма), обусловленным мутацией в гене ADA. Все 4 года девочка жила в стерильном боксе. (Пациенты с этим заболеванием не переносят никаких контактов с любой инфекцией из-за тотального отсутствия иммунитета.)

Лимфоциты больной заранее были отделены от остальных элементов крови, Т-лимфоциты стимулированы к росту. Затем in vitro в них был введен ген ADA с помощью ретровирусного вектора. Приготовленные таким образом «генно-инженерные» лимфоциты были возвращены в кровоток.

Указанное событие произошло 14 сентября 1990 г., и эта дата считается днем рождения реальной генной терапии. С этого года стал выходить журнал «Генная терапия».

Из протокола клинического испытания стало ясно, что, во-первых, лимфоциты пациентов с тяжелым иммунодефицитом могут быть изолированы, выращены в лабораторных условиях, в них можно ввести ген, а затем возвратить в крово-

ток больного. Во-вторых, лечение больной было эффективно. Общее количество лимфоцитов возросло до нормального уровня, а количество ADA-белка в Т-клетках увеличилось до 25% нормы. В-третьих, в течение 6 мес перед очередным курсом лечения число «генно-инженерных» лимфоцитов и ADA-фермента в клетках оставалось постоянным. Из стерильного бокса девочку перевезли домой (рис. 10.7).

Рис. 10.7. Первые две девочки, леченные методом генной терапии по поводу тяжелого комбинированного первичного иммунодефицита, обусловленного недостаточностью аденозиндезаминазы (ADA), примерно через 2,5 года после начала лечения

Выбор болезни для начала использования генотерапии был хорошо продуман. Ген ADA к этому времени был клонирован, имел средние размеры, хорошо встраивался в ретровирусные векторы. Ранее при трансплантации костного мозга при

недостаточности ADA было показано, что ключевую роль в болезни играют Т-лимфоциты. Следовательно, на эти клетки-мишени должна быть направлена генотерапия. Важным моментом стало то, что функционирование иммунной системы возможно при уровне ADA-белка 5-10% контрольного. Наконец, АDА -«генно-инженерные» Т-лимфоциты имели селективное преимущество перед исходными дефектными клетками.

Семейная гиперхолестеринемия. Рецепторы ЛПНП, играющих ключевую роль в обмене холестерина, синтезируются в клетках печени. Соответственно на гепатоциты (клетки-мишени) должна быть направлена генотерапия. Одна попытка такого лечения сделана в США у женщины 29 лет с резко выраженным атеросклерозом венечных артерий. Эффект предыдущего хирургического шунтирования уже сошел на нет. Брат больной умер от такой же болезни, не дожив до 30 лет. Генотерапия больной была проведена в несколько этапов.

Больной была сделана частичная (около 15%) гепатэктомия. Удаленную долю печени промыли раствором коллагеназы для разделения гепатоцитов. Получили около 6 млн гепатоцитов. Затем эти клетки выращивали в 800 культуральных чашках на питательной среде. Во время роста в культуре для включения нормального гена ЛПНП в качестве передающего агента использовали ретровирусный вектор. Трансгенные гепатоциты были собраны и введены пациентке через катетер в воротную вену (чтобы клетки достигли печени). Через несколько месяцев при биопсии печени обнаружили, что в некоторых клетках функционирует новый ген. Содержание ЛПНП в крови упало на 15-30%. Улучшение состояния больной позволило проводить лечение только лекарствами, снижающими уровень холестерина.

Рак. Необычайно быстрый прогресс в изучении генома человека и методов генной инженерии позволяет развивать генную терапию не только для моногенно наследуемых болезней, но и для таких многофакторных болезней, как рак. Генная терапия злокачественных новообразований уже начата, хотя на ее пути много трудностей, обусловленных необходимостью обеспечения селективности, специфичности, чувствительности и безопасности переноса генов. В настоящее время применяется следующая стратегия генотерапии рака: повышение иммуногенности опухоли путем вставки цитокиновых генов, генов, кодирующих главный комплекс гистосовместимости, лимфоцитарных лигандов; направленная доставка (векторирование) опухолевых цитокинов в клетки, которые в

пределах опухоли локально могут реализовать токсические эффекты (например, в лимфоциты, инфильтрующие опухоли); использование опухолеспецифических пролекарственных активаторов, т.е. вставка ферментативно пролекарственно-активирующих генов, сливающихся с промоторными системами, которые реализуются через дифференциально контролируемую (идеально опухолеспецифическую) транскрипцию; введение маркирующих генов, которые могут обеспечивать выявление минимально оставленных после операции или разрастающихся опухолей; искусственная репрессия функций генов путем вставки генов.

Небольшое число попыток генотерапии злокачественных опухолей связано с введением в клетки резецированной опухоли генов ИЛ-2 или ФНО. Затем эти клетки вводят подкожно в область бедра. Через 3 нед удаляют регионарный лимфатический узел (для места введения смеси трансгенных опухолевых клеток). Культивируют Т-лимфоциты, выделенные из этого узла. Кроме того, размножают лимфоциты из опухоли (инфильтрирующие опухоль). Пациенту вводят общую массу лимфоцитов, что обеспечивает иммунную реакцию на опухолевые клетки. Так лечили больных злокачественной меланомой, раком почки, запущенным раком разных органов.

Изменение экспрессии генов как метод лечения

Это направление генной терапии открылось для научных разработок в связи с прогрессом функциональной геномики как части генома человека, другими словами, с увеличением знаний об основах нормальной и патологической экспрессии генов. Изменения экспрессии генов можно достичь путем фармакологической модуляции или РНКинтерференции. На сегодня можно говорить о трех направлениях разработки методов лечения наследственных болезней путем изменения экспрессии генов: повышение экспрессии в гене, определяющим болезнь; повышение экспрессии в гене, не относящимся к болезни; уменьшение экспрессии продукта аномального доминантного гена. - При наследственном ангионевротическом отеке (аутосомнодоминантная болезнь) у больных непредвиденно развивается подслизистый и подкожный невротический отек. Обусловлено это недостаточной выработкой ингибитора эстеразы компонента комплемента С1. Из-за быстрой природы атак отека профилактически назначают лечение синтетическими андрогенами (даназолом). Андрогены значительно увеличивают количество

мРНК ингибитора С1 (возможно в нормальном и мутантном локусах). Частота серьезных приступов у больных резко уменьшается.

Терапия путем фармакологической модуляции экспрессии гена может быть направлена на увеличение экспрессии нормального гена с целью компенсации эффекта мутации в другом гене. Гипометилирование ДНК увеличивает количество фетального гемоглобина у взрослых. Увеличение уровня фетального гемоглобина (α2γ2) вполне адекватно для пациента с серповидноклеточной анемией, поскольку гемоглобин F (фетальный) является нормальным переносчиком кислорода и препятствует полимеризации гемоглобина S. Суть модуляции в следующем - метилирование промотора тормозится приемом аналога цитидина децитабином (5-аза-2"-деоксицитидин), который включается вместо цитидина. Блокада метилирования приводит к увеличению экспрессии гена γ-глобина и доли гемоглобина F в крови. Такая комбинация, очевидно, окажется полезной и для лечения β-талассемии.

Уменьшения экспрессии доминантного гена можно достичь путем РНК-интерференции (информацию о малой интерферирующей РНК см. в гл. 1). При многих наследственных болезнях патологические изменения вызваны токсическими продуктами (белки при болезнях экспансии нестабильных повторов) или снижением вклада нормального белка (аномальный коллаген при несовершенном остеогенезе). Патогенетически ясно, что надо уменьшить объем синтеза мутантного белка без нарушения синтеза белка с нормального аллеля. Эта цель может быть достигнута РНК-интерференцией. Цепи коротких РНК связываются с целевой РНК и вызывают их распад. Ориентируясь на быстрый прогресс в изучении малых РНК (малых интерферирующих РНК), можно надеяться на большой потенциал этой технологии для лечения наследственных болезней, хотя РНКинтерференционная терапия находится еще на раннем этапе развития.

Риски клеточной и генной терапии

Как видно из приведенных выше примеров, эра генотерапии человека уже началась. Определены принципы и методические подходы генотерапии, отобраны болезни, потенциально подлежащие этому

лечению. Работа продолжается одновременно в разных странах и в различных направлениях. Уже очевидно, что генотерапия будет применяться для лечения не только наследственных и сердечнососудистых болезней, но и злокачественных опухолей и хронических вирусных инфекций.

Вместе с тем необходимо отметить, что применять эти методы надо крайне осторожно (это относится именно к применению, а не к разработке!). Это особенно важно при лечении наследственных болезней (особенно расширенном), даже если будут еще более решительные прорывы в способах доставки генов в клетки-мишени. Необходимо внимательно наблюдать за отдельными результатами лечения и строго соблюдать этические и деонтологические принципы.

Три типа рисков клеточной и генной терапии уже обозначились.

Неблагоприятный ответ на вектор или комбинацию вектор/ болезнь. По крайней мере, один пациент погиб из-за патологического иммунного ответа на введенный ген с аденовирусным вектором. Вывод из этого случая уже сделан - при выборе вектора необходимо учитывать патофизиологические характеристики наследственного заболевания.

Инсерционный мутагенез, приводящий к злокачественным новообразованиям. Существует вероятность, что переданные клетка или ген (неважно - в чистом виде или с трансгенной клеткой) может активизировать протоонкогены или нарушить супрессоры опухолевого роста. Непредвиденный ранее механизм онкогенеза был обнаружен у некоторых пациентов после генотерапии Х-сцепленного комбинированного иммунодефицита. Перенос гена у этих больных содействовал развитию лимфопролиферативного заболевания.

Онкологический риск при клеточной терапии в связи с генетической нестабильностью клеточных трансплантатов, в культуре которых нередко возникают аномальные хромосомные клоны.

Все типы рисков могут быть сведены к минимуму при правильной проверке методов на безопасность.

ЗАКЛЮЧЕНИЕ

Итак, лечение наследственных болезней - необычайно трудная задача, не всегда эффективно решаемая. Несмотря на это, оно должно быть постоянным и настойчивым. Нестойкость, а часто и недо-

статочная выраженность эффектов терапии не означают отказа от ее постоянного проведения не только с клинической точки зрения, но и по деонтологическим соображениям. При этом следует принимать во внимание две особенности лечения наследственных болезней:

Необходимость долговременного контроля лечения;

Исходная диагностическая точность до назначения лечения в связи с генетической гетерогенностью наследственных болезней.

КЛЮЧЕВЫЕ СЛОВА И ПОНЯТИЯ

Виды симптоматического лечения Генная терапия (общая схема)

Генная терапия злокачественных новообразований Генная терапия моногенных болезней (примеры) Евфеника

Концепция вырождающихся семей Коррекция обмена на уровне продукта Коррекция обмена на уровне субстрата Клеточная терапия Стволовые клетки Негативная евгеника

Примеры лекарственного симптоматического лечения

Принципы патогенетического лечения

Трансгеноз

Ферментотерапия наследственных болезней Хирургические методы лечения

Биология стволовых клеток и клеточные технологии: в 2 т. / под ред. М.А. Пальцева. - М.: Медицина, 2009. - 728 с.

Долгих М.С. Возможности генной терапии, ее методы, объекты и перспективы // Успехи современной биологии. - Т. 124. - № 2. -

С. 123-143.

Марахонов А.В., Баранова А.В., Скоблов М.Ю. РНК-интерференция: фундаментальные и прикладные аспекты // Медицинская генетика. - 2008. - № 10. - С. 44-55.

В настоящее время благодаря успехам генетики в целом и существенномау прогрессу теоретической и клинической медицины можно твердо утверждать, что многие наследственные болезни успешно лечатся. Именно такая установка должна быть у врача.

Как и при лечении других хорошо изученных болезней (например, инфекционных), можно выделить три подхода к лечению наследственных болезней и болезней с наследственной предрасположенностью: симптоматическое, патогенетическое, этиологическое.

Применительно к наследственным болезням в отдельную группу можно выделить хирургические методы, поскольку они иногда выполняют функции симптоматической терапии, иногда патогенетической, иногда и той и другой вместе.

Симптоматическое лечение - не только лекарственное. Многие виды физических методов лечения (климатотерапия, разные виды электротерапии, теплолечение) применяются при наследственных болезнях нервной системы, наследственных болезнях обмена веществ, заболеваниях скелета. Больные после таких курсов лечения чувствуют себя намно-го лучше, продолжительность их жизни удлиняется.

При патогенетических подходах к лечению наследственных болезней исходят из того, что у больных либо образуется аномальный белок (фермент), либо нормального белка вырабатывается недостаточно (до полного отсутствия). За этими событиями следуют изменения цепи превращения субстрата или его продукта.

Значение этих принципов и конкретных путей реализации действия гена помогает правильно разрабатывать схемы лечения и даже терапевтическую стратегию.

В целом патогенетические подходы к лечению наследственных болезней систематизировано в зависимости от уровня биохимического дефекта можно представить следующим образом. Суть любых подходов к лечению схематично сводится к возмещению или выведению чего-то. Если ген не работает, то необходимо возместить его продукт; если ген производит не то, что нужно, и образуются токсические продукты, то необходимо удаление таких продуктов и возмещение основной функции; если ген производит много продукта, то избыток последнего удаляют.

Заключение.

В заключение хочется сказать о том, что любое заболевание важно вовремя обнаружить, в том числе и наследственное..

Сейчас у врачей появилась возможность назначать пациентам генотерапевтическое лечение. Будучи выделенным из организма, любой ген может быть клонирован и использован как лечебное средство. Оказалось, что генотерапия, которая создавалась специально для лечения наследственных болезней, эффективна для лечения ненаследственных, в первую очередь онкологических заболеваний, вирусных инфекций и других нарушений. Если специалистам удастся вовремя обнаружить наследственную болезнь, они подчас добиваются поразительных результатов в ее лечении. Но лучшим средством от наследственных болезней является их профилактика. Родители обязательно должны помнить, что будущее детей надо прогнозировать.

Сегодня в диагностике многих генных болезней помогают специальные биохимические исследования. Стремительно развивается самая современная ДНК-диагностика - исследование отдельных генов особыми сложными методами
Тем не менее, хочется подчеркнуть тот факт, что никакого единого «анализа на наследственность» нет и быть не может. Многие наследственные болезни нельзя подтвердить никаким анализом, но часто он и не нужен: клинический диагноз вполне надежен.

Список использованной литературы

1. Бочков Н.П. Генетика человека (Наследственность и патология) – М., 1978
2. Гинтер А.В. Наследственные болезни в популяциях человека. М.: Медицина, 2002.
3. Козлова С.И., Демикова Н.С., Семанова Е., Блинникова О.Е. Наследственные синдромы и медико-генетическое консультирование – М., 1996. – 416 с.
4. Лильин Е.Т., Богомазов Е.А., Гоман-Кадошников П.Б. Генетика для врачей.- М., Медицина, 1990.
5. Наследственные болезни в популяциях человека. Под ред. Е.К.Гинтера. // М.: Медицина. 2002. - 303 с.

Возможность лечения наследственных болезней еще недавно вызывала скептические усмешки - настолько укрепилось представление о фатальности наследственной патологии, полной беспомощности врача перед унаследованным дефектом. Однако если это мнение могло быть в определенной мере оправданным до середины 50-х годов, то в настоящее время, после создания ряда специфических и во многих случаях высокоэффективных методов лечения наследственных болезней, подобное заблуждение связано или с недостатком знаний, или, как справедливо отмечают К. С. Ладодо и С. М. Барашнева (1978), с трудностью ранней диагностики этих патологий. Их выявляют на стадии необратимых клинических расстройств, когда медикаментозная терапия оказывается недостаточно эффективной. Между тем современные методы диагностики всех видов наследственных аномалий (хромосомных болезней, моногенных синдромов и мультифакториальных болезней) позволяют определять заболевание на самых ранних стадиях. Успешность вовремя начатого лечения иногда бывает поразительной. Хотя сегодня борьба с наследственной патологией - дело специализированных научных учреждений, думается, что недалеко то время, когда больные после установления диагноза и начала патогенетического лечения будут поступать под наблюдение врачей обычных клиник и поликлиник. Это требует от практического врача знания основных методов лечения наследственной патологии - как уже существующих, так и разрабатываемых.

Среди разнообразных наследственных заболеваний человека особое место занимают наследственные болезни обмена веществ в связи с тем, что генетический дефект проявляется или в период новорожденности (галактоземия, муковисцидоз), или в раннем детстве (фенилкетонурия, галактоземия). Эти болезни занимают одно из первых мест среди причин детской смертности [Вельтищев Ю. Е., 1972]. Весьма оправдано то исключительное внимание, которое уделяется в настоящее время лечению этих заболеваний. В последние годы приблизительно при 300 из более чем 1500 наследственных аномалий обмена установлен конкретный генетический дефект, обусловливающий функциональную неполноценность фермента. Хотя в основе возникающего патологического процесса лежит мутация того или иного гена, участвующего в формировании ферментных систем, патогенетические механизмы этого процесса могут иметь совершенно различное выражение. Во-первых, изменение или отсутствие активности "мутантного" фермента может привести к блокированию определенного звена метаболического процесса, в силу чего в организме произойдет накопление метаболитов или первоначального субстрата, обладающих токсическим действием. Измененная биохимическая реакция может вообще пойти по "неправильному" пути, следствием чего окажется появление в организме вовсе не свойственных ему "чужеродных" соединений. Во-вторых, в силу тех же причин в организме может быть недостаточное образование тех или иных продуктов, что может иметь катастрофические последствия.

Следовательно, патогенетическая терапия наследственных болезней обмена веществ основана на принципиально разных подходах с учетом отдельных звеньев патогенеза.

ЗАМЕСТИТЕЛЬНАЯ ТЕРАПИЯ

Смысл заместительной терапии наследственных ошибок метаболизма прост: введение в организм отсутствующих или недостаточных биохимических субстратов.

Классическим примером заместительной терапии является лечение сахарного диабета. Применение инсулина позволило резко уменьшить не только смертность от этого заболевания, но и инвалидизацию больных. С успехом применяется заместительная терапия и при других эндокринных заболеваниях - препаратами йода и тироидина при наследственных дефектах синтеза тироидных гормонов [Жуковский М. А., 1971], глюкокортикоидами при аномалиях стероидного обмена, хорошо известных клиницистам как адреногенитальный синдром [Таболин В. А., 1973]. Одно из проявлений наследственных иммунодефицитных состояний - дисгаммаглобулинемия - довольно эффективно лечится введением гамма-глобулина и полиглобулина. На этом же принципе основано лечение гемофилии А переливанием донорской крови и введением антигемофильного глобулина.

Высокоэффективным оказалось лечение болезни Паркинсона при помощи L-3-4-дигидроксифенилаланина (L-ДОФА); эта аминокислота служит в организме предшественником медиатора дофамина. Введение больным L-ДОФА или его производных приводит к резкому увеличению концентрации дофамина в синапсах центральной нервной системы, что значительно облегчает симптоматику заболевания, особенно уменьшает мышечную ригидность.

Относительно просто проводится заместительная терапия некоторых наследственных болезней обмена, патогенез которых связан с накоплением продуктов метаболизма. Это переливание лейкоцитной взвеси или плазмы крови здоровых доноров при условии, что в "нормальных" лейкоцитах или плазме имеются ферменты, биотрансформирующие накапливающиеся продукты. Такое лечение дает положительный эффект при мукополисахаридозах, болезни Фабри, миопатиях [Давиденкова Е. Ф., Либерман П. С., 1975]. Однако заместительной терапии наследственных болезней обмена препятствует то, что многие ферментные аномалии локализованы в клетках центральной нервной системы, печени и т. д. Доставка к этим органам-мишеням тех или иных ферментативных субстратов затруднена, поскольку при их введении в организм развиваются соответствующие иммунопатологические реакции. В результате происходит инактивация или полное разрушение фермента. В настоящее время разрабатывают методы для предотвращения этого явления.

ВИТАМИНОТЕРАПИЯ

Витаминотерапия, т. е. лечение определенных наследственных болезней обмена введением витаминов, весьма напоминает заместительную терапию. Однако при заместительной терапии в организм вводят физиологические, "нормальные" дозы биохимических субстратов, а при витаминотерапии (или, как ее еще называют, "мегавитаминной" терапии) - дозы, в десятки и даже сотни раз большие [Барашнев Ю. И. и др., 1979]. Теоретической основой подобного метода лечения врожденных нарушения обмена и функции витаминов является следующее. Большинство витаминов на пути образования активных форм, т. е. коферментов, должны пройти этапы всасывания, транспоргировки и накопления в органах-мишенях. Каждый из этих этапов требует участия многочисленных специфических ферментов и механизмов. Изменение или извращение генетической информации, детерминирующей синтез и активность этих ферментов или их механизмы, может нарушить превращение витамина в активную форму и тем самым помешать ему осуществить свою функцию в организме [Спиричев В. Б., 1975]. Аналогичны и причины нарушения функции витаминов, не являющихся коферментами. Их дефект, как правило, опосредован взаимодействием с неким ферментом и при нарушении его синтеза или активности функция витамина окажется невыполнимой. Возможны и иные варианты наследственных нарушений функций витаминов, но их объединяет то, что симптоматика соответствующих заболеваний развивается при полноценном питании ребенка (в отличие от авитаминоза). Терапевтические дозы витаминов неэффективны, но иногда (при нарушении транспорта витамина, образования кофермента) парентеральное введение исключительно высоких доз витамина или готового кофермента, повышая в какой-то мере следовую активность нарушенных ферментных систем, приводит к терапевтическому успеху [Анненков Г. А., 1975; Спиричев Б. В.. 1975].

Например, болезнь "моча с запахом кленового сиропа" наследуется по аутосомно-рецессивному типу, встречается с частотой 1:60 000. При этом заболевании из организма в больших количествах экскретируются изовалериановая кислота и другие продукты обмена кето-кислот, что придает моче специфический запах. Симптоматика складывается из ригидности мускулатуры, судорожного синдрома, опистотонуса. Одну из форм заболевания успешно лечат избыточными дозами витамина B1 с первых дней жизни ребенка. К другим тиамин-зависимым нарушениям обмена веществ относится подострая некротизирующая энцефаломиелопатия и мегалобластическая анемия.

В СССР наиболее часто встречаются витамин В6-зависимые состояния [Таболин В. А., 1973], к которым относятся ксантуренурия, гомоцистинурия и др. При этих заболеваниях, связанных с генетическими дефектами пиридоксальзависимых ферментов кинурениназы и цистатионинсинтазы, развиваются глубокие изменения интеллекта, неврологические нарушения, судорожный синдром, дерматозы, аллергические проявления и т. д. Результаты раннего лечения этих заболеваний высокими дозами витамина В6 весьма обнадеживают [Барашнев Ю. И. и др., 1979]. Известные витаминзависимые нарушения обмена веществ следующие [по Барашневу Ю. И. и др., 1979].

ХИРУРГИЧЕСКОЕ ЛЕЧЕНИЕ

Хирургические методы нашли широкое применение в лечении наследственных аномалий, прежде всего при исправлении таких пороков развития, как расщелина губы и нёба, полидактилия, синдактилия, врожденный стеноз привратника, врожденный вывих тазобедренного сустава. Благодаря успехам хирургии последних десятилетий стало возможным эффективно корригировать врожденные аномалии сердца и магистральных сосудов, пересаживать почки при их наследственном кистозном поражении. Определенные положительные результаты дает хирургическое лечение при наследственном сфероцитозе (удаление селезенки), наследственном гиперпаратиреозе (удаление аденом паращитовидных желез), тестикулярной ферминизации (удаление гонад), наследственном отосклерозе, болезни Паркинсона и других генетических дефектах.

Специфическим, даже патогенетическим, можно считать хирургический метод в лечении иммунодефицитных состояний. Пересадка эмбриональной (для предотвращения реакции отторжения) вилочковой железы (тимуса) при наследственной иммунопатологии в определенной степени восстанавливает иммунореактивность и значительно улучшает состояние пациентов. При некоторых наследственных болезнях, сопровождающихся дефектами иммуногенеза, производят пересадку костного мозга (синдром Вискотта-Олдрича) или удаление вилочковой железы (аутоиммунные нарушения).

Таким образом, хирургический метод лечения наследственных аномалий и пороков развития сохраняет свое значение как специфический метод.

ДИЕТОТЕРАПИЯ

Диетотерапия (лечебное питание) при многих наследственных болезнях обмена веществ является единственным патогенетическим и весьма успешным методом лечения, а в некоторых случаях и методом профилактики. Последнее обстоятельство тем более важно, что лишь немногие наследственные нарушения обмена веществ (например, дефицит кишечной лактазы) развиваются у взрослых людей. Обычно заболевание проявляется или в первые часы (муковисцидоз, галактоземия, синдром Криглера - Найяра), или в первые недели (фенилкетонурия, агаммаглобулинемия и др.) жизни ребенка, приводя более или менее быстро к печальным последствиям вплоть до смерти.

Простота основного лечебного мероприятия - устранение из пищевого рациона некоего фактора - остается чрезвычайно заманчивой. Однако хотя ни при каких других заболеваниях диетотерапия не выступает самостоятельным и столь эффективным методом лечения [Анненков Г. А., 1975], она требует строгого соблюдения ряда условий и ясного понимания всей сложности получения желаемого результата. Эти условия, по Ю. Е. Вельтищеву (1972), заключаются в следующем: "Точный ранний диагноз аномалии обмена, исключающий ошибки, связанные с существованием фенотипически сходных синдромов; соблюдение гомеостатического принципа лечения, под которым понимается максимальная адаптация диеты к требованиям растущего организма; тщательный клинический и биохимический контроль за проведением диетотерапии".

Рассмотрим это на примере одного из самых распространенных врожденных нарушений обмена веществ - фенилкетонурии (ФКУ). Эта аутосомно-рецессивная наследственная болезнь встречается в среднем с частотой 1:7000. При ФКУ мутация гена приводит к недостаточности фенилаланин-4-гидроксилазы, в связи с чем фенилаланин, поступая в организм, превращается не в тирозин, а в аномальные продукты метаболизма - фенил-пировиноградную кислоту, фенилэтиламин и т.д. Эти производные фенилаланина, взаимодействуя с мембранами клеток центральной нервной системы, припятствуют проникновению в них триптофана, без которого невозможен синтез многих белков. В результате довольно быстро развиваются необратимые психические и неврологические нарушения. Заболевание развивается с началом вскармливания, когда в организм начинает поступать фенилаланин. Лечение заключается в полном удалении фенилаланина из пищевого рациона, т. е. во вскармливании ребенка специальными белковыми гидролизатами. Однако фенилаланин относится к незаменимым, т.е. не синтезируемым в организме человека, аминокислотам и должен поступать в организм в количествах, необходимых для относительно нормального физического развития ребенка. Итак, не допустить, с одной стороны, умственной, а с другой - физической неполноценности - одна из основных сложностей лечения фенилкетонурии, как, впрочем, и некоторых других наследственных "ошибок" метаболизма. Соблюдение принципа гомеостатичности диетотерапии при ФКУ представляет собой довольно сложную задачу. Содержание фенилаланина в пище должно составлять не более 21 % возрастной физиологической нормы, что предупреждает как патологические проявления болезни, так и нарушения физического развития [Бараш-нева С. М., Рыбакова Е. П., 1977]. Современные пищевые рационы для больных ФКУ позволяют дозировать поступление фенилаланина в организм в точном соответствии с его концентрацией в крови по данным биохимического анализа. Ранняя диагностика и незамедлительное назначение диетотерапии (в первые 2-3 мес жизни) обеспечивают нормальное развитие ребенка. Успехи лечения, начатого позже, значительно скромнее: в сроки от 3 мес до года - 26 %, от года до 3 лет - 15 % удовлетворительных результатов [Ладодо К. С., Барашнева С. М., 1978]. Следовательно, своевременность начала диетотерапии - залог ее эффективности в профилактике проявления и лечения этой патологии. Врач обязан заподозрить врожденное нарушение обмена веществ и провести биохимическое исследование, если у ребенка плохо прибавляется масса тела, наблюдаются рвота, патологические "знаки" со стороны нервной системы, отягощен семейный анамнез (ранняя смерть, умственная отсталость) [Вулович Д. и др., 1975].

Коррекция обменных нарушений путем соответствующей специфической терапии разработана для многих наследственных болезней (табл. 8). Однако раскрытие биохимических основ все новых метаболических блоков требует как адекватных методов диетотерапии, так и оптимизации существующих пищевых рационов. Большую работу в этом направлении проводит Институт педиатрии и детской хирургии М3 РСФСР совместно с Институтом питания АМН СССР.

Таблица 8. Результаты диетотерапии при некоторых наследственных болезнях обмена [по Г. А. Анненкову, 1975)
Болезнь Дефектный фермент Диета Эффективность лечения
Фенилкетонурия Фенилаланин-4-гидроксилаза (комплекс трех ферментов и двух кофакторов) Ограничение фенилаланина Хорошая, если лечение начато в первые 2 мес жизни
Болезнь "мочи с запахом кленового сиропа" Декарбоксилазы боковых цепей кетокислот Ограничение лейцина, изолейцина, валина Удовлетворительная, если лечение начато в неонатальном периоде
Гомоцистинурия Цистатионинсинтаза Ограничение метионина, добавление цистина, пиридоксина Прекрасные результаты, если лечение начато до клинических проявлений заболевания
Гистидинемия Гистидиндезаминаза Ограничение гистидина Еще неясна
Тирозинемия n-Гидроксифенил-пируват - оксидаза Ограничение тирозина и фенилаланина То же
Цистиноз Возможно, лизосомная цистинредуктаза либо белки мембранного транспорта, выводящие цистин из лизосом Ограничение метионина и цистина (один из видов терапии) То же
Глицинемия (некоторые формы) Ферментные цепочки превращения пропионата в сукцинат; серин-гидроксиметил-трансфераза Ограничение белка (особенно богатого глицином и серином) Хорошая
Болезни нарушения цикла мочевины (некоторые формы) Орнитин- карбамоил- трансфераза, карбамоил- фосфатсинтаза, аргининосукцинат- синтетаза Ограничение белка Частичная
Галактоземия Галактозо-1-фосфат-уридил-трансфераза Безгалактозная Хорошая, если лечение начато в неонатальном периоде
Непереносимость фруктозы Фосфофруктокиназа Бесфруктозная Хорошая, если лечение начато в раннем детстве
Нарушение всасывания ди- и моносахаридов Кишечные сахараза, лактаза; дефект транспортных белков в клетках стенки кишечника Исключение соответствующих ди- и моносахаридов Хорошая
Метилмалоновая ацидемия и кетонная глицинемия Изомераза 1-метилмалоновой кислоты Ограничение лейцина, изолейцина, валина, метионина, треонина Хорошая
Гликогенез Кори тип I Глюкозо-6-фосфатаза Ограничение углеводов Частичная
Гликогенез Кори тип V Мышечная фосфорилаза Дополнительное введение глюкозы или фруктозы Положительный эффект
Гиперлипидемии, гиперхолестеринемии - Низкое содержание насыщенных жирных кислот, увеличение ненасыщенных Некоторый положительный эффект, но опыт недостаточен
Болезнь Рефсума (церебротендинальный ксантоматоз) - Безрастительная диета Успешное

Рассмотренные методы лечения наследственных болезней в силу установленной этиологии или патогенетических звеньев можно считать специфическими. Однако для абсолютного большинства видов наследственной патологии мы пока не располагаем методами специфической терапии. Это относится, например, к хромосомным синдромам, хотя их этиологические факторы хорошо известны, или к таким болезням с наследственным предрасположением, как атеросклероз и гипертония, хотя отдельные механизмы развития этих заболеваний более или менее изучены. Лечение тех и других оказывается не специфическим, а симптоматическим. Скажем, основная цель терапии при хромосомных нарушениях - коррекция таких фенотипических проявлений, как умственная отсталость, замедленный рост, недостаточная феминизация или маскулинизация, недоразвитие гонад, специфический внешний вид. С этой целью применяют анаболические гормоны, андрогены и эстрогены, гормоны гипофиза и щитовидной железы в комплексе с другими методами медикаментозного воздействия. Однако эффективность лечения, к сожалению, оставляет желать лучшего.

Несмотря на отсутствие достоверных представлений об этиологических факторах мультифакториальных болезней, их лечение с помощью современных медикаментозных средств дает неплохие результаты. Не устраняя причины болезни, врач вынужден постоянно проводить поддерживающую терапию, что является серьезным недостатком. Однако упорный труд сотен лабораторий, изучающих наследственную патологию и методы борьбы с ней, приведет, безусловно, к важным результатам. Фатальность наследственных болезней существует только до тех пор, пока их причины и патогенез не изучены.

ЭФФЕКТИВНОСТЬ ЛЕЧЕНИЯ МУЛЬТИФАКТОРИАЛЬНЫХ БОЛЕЗНЕЙ
В ЗАВИСИМОСТИ ОТ СТЕПЕНИ НАСЛЕДСТВЕННОГО ОТЯГОЩЕНИЯ У БОЛЬНЫХ

Основной задачей клинической генетики становится в настоящее время изучение влияния генетических факторов не только на полиморфизм клинических проявлений, но и на эффективность лечения распространенных мультифакториальных болезней. Выше отмечалось, что этиология этой группы болезней сочетает как генетические, так и средовые факторы, особенности взаимодействия которых обеспечивают реализацию наследственного предрасположения или препятствуют его проявлению. Еще раз кратко напомним, что мультифакториальные болезни характеризуются общими чертами:

  1. высокой частотой среди населения;
  2. широким клиническим полиморфизмом (от скрытых субклинических до резко выраженных проявлений);
  3. значительными возрастными и половыми отличиями в частоте отдельных форм;
  4. сходством клинических проявлений у больного и его ближайших родственников;
  5. зависимостью риска заболевания для здоровых родственников от общей частоты болезни, числа больных родственников в семье, от тяжести течения заболевания у больного родственника и т. д.

Однако сказанное не затрагивает особенности лечения мультифакториальной патологии в зависимости от факторов наследственной конституции организма человека. Между тем клинико-генетический полиморфизм болезни должен сопровождаться большим различием в эффективности лечения, что и наблюдается на практике. Иначе говоря, можно выдвинуть положение о связи эффекта лечения того или иного заболевания со степенью отягощения у конкретного больного соответствующим наследственным предрасположением. Детализируя это положение, мы впервые сформулировали [Лильин Е. Т., Островская А. А., 1988], что на его основе можно ожидать:

  1. значительную вариабельность результатов лечения;
  2. выраженные различия в эффективности различных терапевтических приемов в зависимости от возраста и пола больных;
  3. сходство лечебного эффекта одних и тех же препаратов у больного и его родственников;
  4. отсроченный лечебный эффект (при одинаковой тяжести болезни) у больных с большей степенью наследственного отягощения.

Все перечисленные положения могут быть изучены и доказаны на примерах разнообразных мультифакториальных болезней. Однако, поскольку все они логически вытекают из основной вероятной зависимости - тяжести процесса и эффективности лечения его, с одной стороны, со степенью наследственного отягощения, с другой, - то именно эта связь нуждается в строго верифицированном доказательстве на соответствующей модели. Эта модель заболевания должна удовлетворять, в свою очередь, следующим условиям:

  1. четкая стадийность в клинической картине;
  2. относительно простая диагностика;
  3. проведение лечения в основном по единой схеме;
  4. простота регистрации терапевтического эффекта.

Моделью, достаточно удовлетворяющей поставленным условиям, является хронический алкоголизм, мультифакториальный характер этиологии которого в настоящее время не подвергается сомнению. Вместе с тем наличие синдрома похмелья и запоев достоверно свидетельствует о переходе процесса во II (основную) стадию заболевания, снижение толерантности - о переходе в III стадию. Оценка терапевтического эффекта по длительности ремиссии после проведенной терапии также относительно проста. Наконец, принятая в нашей стране единая схема лечения хронического алкоголизма (аверсионная терапия путем чередования курсов) применяется в большинстве стационаров. Поэтому для дальнейшего анализа мы изучили связь между степенью наследственного отягощения по хроническому алкоголизму, тяжестью его течения и эффективностью лечения в группах лиц с одинаковым возрастом начала заболевания.

По степени наследственного отягощения все больные (1111 мужчин в возрасте от 18 до 50 лет) были разделены на 6 групп: 1-я - лица, не имеющие родственников, страдающих хроническим алкоголизмом или другими психическими заболеваниями (105 человек); 2-я - лица, имеющие родственников I и II степени родства, страдающих психическими заболеваниями (55 человек); 3-я - лица, имеющие больных алкоголизмом родственников II степени родства (дедушки, бабушки, тети, дяди, двоюродные сибсы) (57 человек); 4-я - лица, имеющие отца, страдающего хроническим алкоголизмом (817 человек); 5-я - лица, имеющие мать, страдающую хроническим алкоголизмом (46 человек); 6-я - лица, имеющие обоих больных родителей (31 человек). Тяжесть течения процесса характеризовали по возрасту пациента на момент перехода из одной фазы в другую, а также по длительности временных промежутков между отдельными фазами процесса. Эффективность лечения оценивали по максимальной ремиссии за время течения процесса.
Таблица 9. Средний возраст (годы) возникновения клинических проявлений хронического алкоголизма в группах больных с различной степенью наследственного отягощения
Симптом Группа
1-я 2-я 3-я 4-я 5-я 6-я
Первая алкоголизация 17,1±0,5 16,6±1,0 16,0±1,2 15,8±0,3 15,4±1,0 14,7±1,2
Начало эпизодического пьянства 20,6±1,0 20,1±1,21 19,8±1,5 19,6±0,5 18,7±1,6 18,3±1,5
Начало систематического пьянства 31,5±1,6 26,3±1,9 25,7±2,0 24,6±0,5 23,8±2,1 23,9±2,8
Возникновение синдрома похмелья 36,2±1,2 29,5±2,0 29,3±2,0 28,1±0,5 27,7±2,1 26,3±2,8
Постановка на учет и начало лечения 41,0±1,3 32,7±2,2 34,1±2,1 33,0±0,9 31,8±2,3 30,0±2,8
Развитие алкогольного психоза 41,3±12,5 32,2±6,9 33,5±1,8 28,6±6,6

Анализ данных табл. 9 показывает, что средний возраст первой алкоголизации достоверно отличается в группах с различной степенью наследственного отягощения. Чем выше степень отягощения, тем раньше начинается алкоголизация. Естественно предположить, что средний возраст на момент возникновения всех остальных симптомов тоже будет различен. Представленные ниже результаты подтверждают это. Однако разница, например, между больными двух крайних групп по среднему возрасту первой алкоголизации и началу эпизодического пьянства составляет 2,5 года, тогда как разница между ними по среднему возрасту начала систематического пьянства равна 7 годам, по среднему возрасту возникновения синдрома похмелья - 10 лет, а по среднему возрасту возникновения психоза - 13 лет. Промежутки между началом эпизодического пьянства и переходом к систематическому, длительность систематического пьянства до возникновения синдрома похмелья и алкогольных психозов тем короче, чем выше степень наследственного отягощения. Следовательно, формирование и динамика данных симптомов находятся под генетическим контролем. Этого нельзя сказать о средней длительности интервала от первой алкоголизации до начала эпизодического употребления алкоголя (во всех группах он равен 3,5 года) и средней длительности интервала от формирования синдрома похмелья до постановки больного на учет (во всех группах равен 4 годам), которые, естественно, зависят исключительно от факторов среды.

Переходя к результатам исследования связи эффективности лечения хронического алкоголизма со степенью наследственного отягощения больных, отметим, что у больных наблюдалась достоверная тенденция к уменьшению продолжительности ремиссии при большей степени отягощения. Разница в двух крайних группах (без наследственного отягощения и с максимальным отягощением) составляет 7 мес (соответственно 23 и 16 мес). Следовательно, эффективность проводимых терапевтических мероприятий также связана не только с социальным, но и с биологическими факторами, детерминирующими патологический процесс.

Таблица 10. Прямой анализ наследственных болезней с использованием генных проб для выявления внутригенного дефекта
Болезнь Проба
Недостаточность α 1 -антитрипсина Синтетический олигонуклеотидный α 1 -антитрипсин
Гиперплазия надпочечников Стероид-21 -гидроксилаза
Амилоидная нейропатия (аутосомно-доминантная) Преальбумин
Недостаточность антитромбина III Антитромбин III
Недостаточность хорионического соматомаммотропина Хорионический соматомаммотропин
Хронический гранулематоз (ХГ) "Кандидат" в гены ХГ
Наследственный эллиптоцитоз Протеин 4.1
Недостаточность гормона роста Гормон роста
Идиопатический гемохроматоз HLA - DR - бета
Гемофилия А Фактор VIII
Гемофилия В Фактор IX
Болезнь тяжелых цепей Тяжелые цепи иммуноглобулина
Наследственная персистенция фетального гемоглобина γ-глобулин
Гиперхолестеринемия
Дефицит тяжелых цецей иммуноглобулина Тяжелые цепи иммуноглобулина
Т-клеточный лейкоз Т-клеточные рецепторы, альфа-, бета- и гамма-цепей
Лимфомы Тяжелые цепи иммуноглобулинов
Про-α 2 (I) коллаген, про-α 1 (I) коллаген
Фенилкетонурия Фенилаланингидроксилаза
Порфирия Уропорфириноген-декарбоксилаза
Болезнь Зандхоффа, инфантильная форма β-Гексозоаминидаза
Тяжелый комбинированный иммунодефицит Аденозиндезаминидаза
Альфа-талассемия β-Глобулин, ε-глобин
Бета-талассемия β-Глобин
Тирозинемия II Тирозинаминотрансфераза
Таблица 11. Анализ делеций хромосом и анеуплодии при заболеваниях по данным клонирования генов и ДНК проб
Болезнь Проба
Аниридия Каталаза
Синдром Бекуита - Видемана Инсулин, инсулиноподобный фактор роста
Синдром кошачьего глаза ДНК-сегмент хромосомы 22
Хориодермия DXY I
ДНК-сегменты хромосомы X
Синдром Клайнфелтера ДНК-сегменты хромосомы X
Болезнь Норри DXS 7 (1.28)
Синдром Прадера-Вилли ДНК-сегменты хромосомы 15
Ретинобластома ДНК-сегменты хромосомы 13
Опухоль Вильмса (аниридия) β-субъединица фолликулостимулирующего гормона
Делеция Yp- ДНК-сегменты хромосомы Y
Делеция 5р- ДНК-сегменты хромосомы 5
Синдром 5q- C-fms
Фактор, стимулирующий гранулоциты - макрофаги
Синдром 20q- c-src
Синдром 18р- Альфоидная последовательность хромосомы 18
Таблица 12. Непрямой анализ наследственных болезней с помощью тесно сцепленных полиморфных фрагментов ДНК
Болезнь Проба
Недостаточность α 1 -антитрипсина, эмфизема α 1 -антитрипсин
Синдром Элерса-Данлоса IV типа α 3 (I) коллаген
Гемофилия А Фактор VIII
Гемофилия В Фактор IX
Синдром Леша - Нихена Гипоксантин-гуанинфосфорибозил-трансфераза
Гиперлипидемия Апо-липопротеиду С2
Синдром Марфана α 2 (I) коллаген
Недостаточность орнитин-карбамоилтрансферазы Орнитинтранскарбамилаза
Несовершенный остеогенез I типа α 1 (I) коллаген, α 2 (I) коллаген
Фенилкетонурия Фенилаланингидроксилаза
Таблица 13. Непрямой анализ наследственных болезней с использованием сцепленных сегментов ДНК для изучения совместно наследующихся полиморфизмов ДНК
Болезнь Проба
Поликистоз почек взрослого типа HVR-область 3 до α-глобина
Агаммаглобулинемия р 19-2 (DXS3); S21 (DXS1) сегменты ДНК хромосомы X
Наследственный нефрит Альпорта DXS 17
Ангидротическая эктодермальная дисплазия рТАК8
Болезнь Шарко-Мари-Тута X-сцепленная доминантная DXYS1
Хориодермия DXYS1, DXS11; DXYS 1; DXYS12
Хронический гранулематоз 754 (DXS84); PERT 84 (DXS 164)
Кистозный фиброз Про-α 2 (I) коллаген, 7С22 (7; 18) p/311 (D7S18), С-met S8
Мышечные дистрофии Дюшенна и Беккера PERT 87 (DXS1, 164), разные
Врожденный дискератоз DXS 52, фактор VIII, DXS15
Мышечная дистрофия Эмери-Дрейфуса DXS 15, фактор VIII
Синдром умственной отсталости с ломкой хромосомой X Фактор IX, St14 (DXS 52)
Гемофилия А S14, DX 13 (DXS 52, DXS 15)
Хорея Гентингтона CD8 (D4S10)
Недостаточность 21-гидроксилазы HLA класса I и II
Гиперхолестеринемия Рецептор липопротеида низкой плотности
Гипогидротическая эктодермальная дисплазия DXYS1, 58-1 (DXS 14), 19-2 (DXS3)
Гипофосфатемия доминантная DXS41, DXS43
Синдром Хантера DX13 (DXS 15), разные
Ихтиоз Х-сцепленный DXS 143
Болезнь Кеннеди DXYS 1
Миотоническая дистрофия Сегменты ДНК хромосомы 19 D19 S19; апо-липопротеину С2
Нейрофиброматоз Минисателлитная
Нейропатия Х-сцепленная DXYSl, DXS14 (р58-1)
Пигментный ретинит DXS7 (L 1.28)
Спастическая параплегия DX13 (DXS15); S/14 (DXS52)
Спиноцеребральная атаксия Сегменты ДНК хромосомы 6
Болезнь Вильсона D13S4, D13S10

Таким образом, полученные результаты позволяют сделать вывод о существовании реальной связи между тяжестью течения и эффективностью лечения хронического алкоголизма со степенью наследственного отягощения. Следовательно, анализ наследственного отягощения и его ориентировочная оценка по приведенной в главе 2 схеме должны оказать семейному врачу помощь в выборе оптимальной тактики лечения и прогнозе течения различных мультифакториальных болезней по мере накопления соответствующих данных.

РАЗРАБАТЫВАЕМЫЕ МЕТОДЫ ЛЕЧЕНИЯ

Рассмотрим возможности методов лечения, которые еще не вышли из стен лабораторий и находятся на той или иной стадии экспериментальной проверки.

Анализируя выше принципы заместительной терапии, мы упоминали о том, что распространение этого метода борьбы с наследственной патологией ограничено из-за невозможности целенаправленной доставки необходимого биохимического субстрата к органам, тканям или к клеткам-мишеням. Как и любой чужеродный белок, вводимые "лекарственные" ферменты вызывают иммунологическую реакцию, ведущую, в частности, к инактивации фермента. В связи с этим пытались вводить ферменты под защитой неких искусственных синтетических образований (микрокапсул), что особого успеха не имело. Между тем защита молекулы белка от окружающей среды с помощью искусственной или естественной мембраны остается на повестке дня. С этой целью в последние годы исследуют липосомы - искусственно созданные липидные частицы, состоящие из каркаса (матрикса) и липидной (т. е. не вызывающей иммунологических реакций) мембраны-оболочки. Матрикс можно заполнить любым биополимерным соединением, например, ферментом, который будет хорошо защищен от контакта с иммунокомпетентными клетками организма внешней мембраной. После введения в организм липосомы проникают внутрь клеток, где под действием эндогенных липаз оболочка липосом разрушается и содержащийся в них фермент, структурно и функционально не поврежденный, вступает в соответствующую реакцию. Той же цели - транспорту и пролонгации действия необходимого клеткам белка - посвящены и эксперименты с так называемыми эритроцитными тенями: инкубируют эритроциты больного в гипотонической среде с добавлением белка, предназначенного для транспорта. Далее восстанавливают изотоничность среды, после чего часть эритроцитов будет содержать белок, присутствующий в среде. Нагруженные белком эритроциты вводят в организм, где происходит его доставка органам и тканям с одновременной защитой.

Среди иных разрабатываемых методов лечения наследственных болезней особое внимание не только медицинской, но и широкой общественности привлекает генная инженерия. Речь идет о непосредственном влиянии на мутантный ген, о его исправлении. Путем бирпсии тканей или взятия крови можно получить клетки больного, в которых при культивировании можно заменить или исправить мутантный ген, а затем аутоимплантировать (что исключило бы иммунологические реакции) эти клетки в организм больного. Такое восстановление утраченной функции генома возможно с помощью трансдукции - захвата и переноса вирусами (фагами) части генома (ДНК) здоровой клетки-донора в пораженную клетку-реципиент, где этот участок генома начинает нормально функционировать. Возможность такого исправления генетической информации in vitro с последующим внесением ее в организм была доказана в ряде экспериментов, что и обусловило исключительный интерес к генной инженерии.

В настоящее время, как отмечает В. Н. Калинин (1987), вырисовывается два подхода к исправлению наследственного материала, основанные на генно-инженерных представлениях. Согласно первому из них (генотерапия), от больного может быть получен клон клеток, в геном которых вводится фрагмент ДНК, содержащий нормальный аллель мутантного гена. После аутотрансплантации можно ожидать выработки в организме нормального фермента и, следовательно, ликвидации патологической симптоматики болезни. Второй подход (генохирургия) связан с принципиальной возможностью извлечения оплодотворенной яйцеклетки из материнского организма и замены в ее ядре аномального гена на клонированный "здоровый". В этом случае после аутоимплантации яйцеклетки развивается плод, не только практически здоровый, но и лишенный возможности передачи патологической наследственности в дальнейшем.

Однако перспективы использования генной инженерии для лечения наследственных болезней обмена веществ оказываются весьма отдаленными, как только мы рассмотрим некоторые из возникающих проблем. Перечислим проблемы, не требующие специальных генетических и биохимических знаний [Анненков Г. А., 1975], решение которых пока остается делом будущего.

Введение "здоровой" ДНК в клетку-реципиент без одновременного удаления "поврежденного" гена или участка ДНК будет означать увеличение содержания ДНК в этой клетке, т. е. ее избыток. Между тем избыток ДНК ведет к хромосомным болезням. Не скажется ли избыток ДНК на функционировании генома в целом? Кроме того, некоторые генетические дефекты реализуются не на клеточном, а на организменном уровне, т. е. при условии центральной регуляции. В этом случае успехи генной инженерии, достигнутые в опытах на изолированной культуре, могут не сохраниться при "возвращении" клеток в организм. Отсутствие методов точного контроля за мерой вносимой генетической информации может привести к "передозировке" конкретного гена и вызвать дефект с обратным знаком: например, лишний ген инсулина при диабете приведет к развитию гиперинсули-немии. Вносимый ген должен быть встроен не в любое, а в определенное место хромосомы, в противном случае могут быть нарушены межгенные связи, что скажется на считывании наследственной информации.

Метаболизм клетки с патологической наследственностью приспособлен к атипичным условиям. Стало быть, встроенный "нормальный" ген, а вернее, его продукт - нормальный фермент - может не найти в клетке необходимую метаболическую цепь и ее отдельные составляющие - ферменты и кофакторы, не говоря уже о том, что продукция клеткой нормального, но по сути "чужеродного" белка может вызвать массивные аутоиммунные реакции.

Наконец, в генной инженерии пока не найдено метода, который исправлял бы геном половых клеток; это означает возможность значительного накопления вредных мутаций в будущих поколениях при фенотипически здоровых родителях.

Таковы вкратце основные теоретические возражения против использования генной инженерии для лечения наследственных обменных нарушений. Абсолютное большинство наследственных болезней обмена веществ - результат крайне редких мутаций. Разработка для каждой из этих зачастую уникальных ситуаций соответствующего метода генной инженерии - дело, не только крайне "громоздкое", экономически невыгодное, но и сомнительное с точки зрения времени начала специфического лечения. Для большинства часто встречающихся врожденных "ошибок" метаболизма разработаны методы диетотерапии, дающие при правильном использовании прекрасные результаты. Мы отнюдь не стремимся доказать бесперспективность генной инженерии для лечения наследственных болезней или дискридитировать ее как метод решения многих общебиологических проблем. Сказанное касается прежде всего замечательных успехов генной инженерии в пренатальной диагностике наследственных болезней различного генеза. Основное достоинство при этом состоит в определении конкретного нарушения структуры ДНК, т. е. "обнаружении первичного гена, являющегося причиной заболевания" [Калинин В. Н., 1987].

Принципы ДНК-диагностики относительно просты для понимания. Первая из процедур (блоттинг) заключается в возможности с помощью специфических ферментов - рестрикционных эндонуклеаз - разделить молекулу ДНК на многочисленные фрагменты, каждый из которых может содержать искомый патологический ген. На втором этапе этот ген выявляют с помощью специальных "зондов" ДНК - синтезированных последовательностей нуклеотидов, меченных радиоактивным изотопом. Этот "зондаж" может быть осуществлен различными путями, описанными, в частности, D. Cooper и J. Schmidtke (1986). Для иллюстрации остановимся лишь на одном из них. С помощью генно-инженерных методов синтезируют небольшую (до 20) нормальную последовательность нуклеотидов, перекрывающую место предполагаемой мутации, и метят ее радиоактивным изотопом. Затем эту последовательность пытаются гибридизировать с ДНК, выделенной из клеток конкретного плода (или индивида). Очевидно, что гибридизация произойдет успешно, если тестируемая ДНК содержит нормальный ген; при наличии мутантного гена, т. е. аномальной последовательности нуклеотидов в цепи выделенной ДНК, гибридизация не произойдет. Возможности ДНК-диагностики на современном этапе демонстрируют табл. 10-13, взятые нами из работы D. Cooper и J. Schmidtke (1987).

Таким образом, в ряде вопросов медицинской практики генная инженерия по мере своего развития и совершенствования, безусловно, добьется еще более впечатляющих успехов. Теоретически она остается единственным методом этиологического лечения разнообразных заболеваний человека, в генезе которых тем или иным образом "представлена" наследственность. В борьбе со смертностью и инвалидностью от наследственных болезней нужно использовать все силы и средства медицины.

ПРОФИЛАКТИКА ВРОЖДЕННОЙ ПАТОЛОГИИ У ЖЕНЩИН ИЗ ГРУПП ПОВЫШЕННОГО РИСКА

Проблема борьбы с врожденной патологией человека в связи с ее медицинской и социально-экономической значимостью привлекает исключительно большое внимание специалистов. Продолжающееся увеличение частоты врожденных дефектов (до 6-8 % среди новорожденных, включая умственную отсталость) и прежде всего тех, которые резко снижают жизнеспособность человека и возможность его социальной адаптации, обусловило создание ряда принципиально новых методов профилактики этих расстройств.

Основным путем борьбы с врожденными заболеваниями считаются их дородовая диагностика с помощью специальных дорогостоящих методов и прерывание беременности в случае обнаружения болезни или дефекта. Совершенно очевидно, что, кроме серьезной психической травмы, которая наносится матери, эта работа требует значительных материальных затрат (см. ниже). В настоящее время за рубежом общепризнано, что со всех точек зрения значительно "выгоднее" не столько вовремя диагностировать беременность аномальным плодом, сколько вообще не допустить возникновения такой беременности. С этой целью осуществляется ряд международных программ по профилактике наиболее тяжелых видов врожденных аномалий - так называемых дефектов нервной трубки - отсутствие головного мозга (анэнцефалия), расщепление позвоночника с грыжей спинного мозга (спина бифида) и другие, частота которых в различных регионах мира колеблется от 1 до 8 на 1000 новорожденных. Очень важно подчеркнуть следующее: от 5 до 10 % матерей, родивших таких детей, имеют аномальное потомство от последующей беременности.

В связи с этим основной задачей указанных программ является профилактика именно повторного появления аномальных детей у женщин, уже имевших ребенка с пороками развития в предыдущей беременности. Это достигается путем насыщения организма женщины некоторыми физиологически активными веществами. В частности, проведенные в некоторых странах (Великобритания, ЧССР, ВНР и др.) исследования показали, что прием витаминов (особенно фолиевой кислоты) в различных сочетаниях перед зачатием и в первые 12 нед беременности сокращает частоту повторного рождения детей с дефектами нервной трубки с 5-10 % до 0-1 %

  1. Андреев И. О фавизме и его этиопатогенезе//Современные проблемы физиологии и патологии детского возраста. - М.: Медицина, 1965. - С. 268-272.
  2. Анненков Г. А. Диетотерапия наследственных болезней обмена веществ//Вопр. питания. - 1975. - № 6. - С. 3-9.
  3. Анненков Г. А. Генная инженерия и проблема лечения наследственных болезней человека//Вестн. АМН СССР. - 1976. - № 12. - С. 85-91.
  4. Барашнев Ю. И., Вельтищев Ю. Е. Наследственные болезни обмена веществ у детей. - Л.: Медицина, 1978. - 319 с.
  5. Барашнев Ю. И., Розова И. Н., Семячкина А. Н. Роль витамина Be в лечение детей с наследственной патологией обмена веществ//Вопр. питания. - 1979. - № 4. - С. 32-40.
  6. Барашнев Ю. И., Руссу Г. С., Казанцева Л. 3. Дифференциальный диагноз врожденных и наследственных заболеваний у детей. - Кишинев: Штиинца, 1984. - 214 с,
  7. Барашнева С. М., Рыбакова Е. П. Практический опыт организации и применения диетического лечения при наследственных энзимопатиях у детей//Педиатрия. - 1977. - № 7. - С. 59-63.
  8. Бочков Н. П. Генетика человека. - М.: Медицина, 1979. - 382 с.
  9. Бочков Н. П., Лильин Е. Т., Мартынова Р. П. Близнецовый метод//БМЭ. - 1976. - Т. 3. - С. 244-247.
  10. Бочков Н. П., Захаров А. Ф., Иванов В. П. Медицинская генетика.- М.: Медицина, 1984. - 366 с.
  11. Бочков Н. П. Профилактика наследственных болезней//Клин. мед. - 1988. - № 5. - С. 7-15.
  12. Буловская Л. Н., Блинова Н. Н., Симонов Н. И. и др. Фенотипические изменения в ацетилировании у опухолевых больных//Вопр. онкол. - 1978. - Т. 24, № 10. - С. 76-79.
  13. Вельтищев Ю. Е. Современные возможности и некоторые перспективы лечения наследственных болезней у детей//Педиатрия. - 1982. - № П. -С. 8-15.
  14. Вельтищев Ю. E., Каганова С. Ю., Таля В. А. Врожденные и наследственные заболевания легких у детей. - М.: Медицина, 1986. - 250 с.
  15. Генетика и медицина: Итоги XIV Международного генетического конгресса/Под ред. Н. П. Бочкова. - М.: Медицина, 1979.- 190 с.
  16. Гиндилис В. М., Финогенова С. А. Наследуемость характеристик пальцевой и ладонной дерматоглифики человека//Генетика.- 1976. - Т. 12, № 8. - С. 139-159.
  17. Гофман-Кадошников П. Б. Биологические основы медицинской генетики. - М.: Медицина, 1965. - 150 с.
  18. Гринберг К. Н. Фармакогенетика//Журн. Всесоюзн. хим. об-ва. - 1970. - Т. 15, № 6. - С. 675-681.
  19. Давиденков С. Н. Эволюционно-генетические проблемы в невропатологии. - Л., 1947. - 382 с.
  20. Давиденкова Е. Ф., Либерман И. С. Клиническая генетика. - Л.: Медицина, 1975. - 431 с.
  21. Давиденкова Е. Ф., Шварц Е. И., Розеберг О. А. Защита биополимеров искусственными и естественными мембранами в проблеме лечения наследственных заболеваний//Вестн. АМН СССР. - 1978.- № 8. - С. 77-83.
  22. Джавадов Р. Ш. К выявлению фавизма в Азербайджанской ССР// Азерб. мед. журн. - 1966. - № 1. - С. 9-12.
  23. Добровская М. П., Санкина Н. В., Яковлева А. А. Состояние процессов ацетилирования и некоторые показатели липидного обмена при инфекционном неспецифическом артрите у детей//Вопр. охр. мат. - 1967. - Т. 12, № 10. - С. 37-39.
  24. Замотаев И. П. Побочное действие лекарств. - М.: ЦОЛИУВ, 1977. - 28 с.
  25. Заславская Р. М., Золотая Р. Д., Лильин Е. Т. Метод близнецовых исследований "контроля по партнеру" в оценке гемодинамических эффектов нонахлазина//Фармакол. и токсикол. - 1981. - № 3.- С. 357.
  26. Игнатова М. С., Вельтищев Ю. Е. Наследственные и врожденные нефропатии у детей. -Л.: Медицина, 1978. - 255 с.
  27. Идельсон Л. И. Нарушения порфиринового обмена в клинике. - М.: Медицина, 1968. - 183 с.
  28. Кабанов М. М. Реабилитация психически больных. - 2-е изд. - Л.: Медицина, 1985. - 216 с.
  29. Калинин В. Н. Достижения в молекулярной генетике//Достижения современной генетики и перспективы их использования в медицине. - Серия: Медицинская генетика и иммунология. - ВНИИМИ, 1987. - № 2. - С. 38-48.
  30. Канаев И. И. Близнецы. Очерки по вопросам многоплодия. - М.-Л.: Изд. АН СССР, 1959.- 381 с.
  31. Козлова С. И. Медико-генетическое консультирование и профилактика наследственных болезней//Профилактика наследственных болезней (сборник трудов)/Под ред. Н. П. Бочкова. - М.: ВОНЦ, 1987.- С. 17-26.
  32. Кошечкин В. А. Выделение генетических факторов риска ишемической болезни сердца и их использование при диспансеризации//Профилактика наследственных болезней (сборник трудов)/Под ред. Н. П. Бочкова.- М.: ВОНЦ, 1987.- С. 103-113.
  33. Краснопольская К. Д. Достижения в биохимической генетике//Достижения современной генетики и перспективы их использования в медицине. - Серия: Медицинская генетика и иммунология. - ВНИИМИ, 1987. - № 2. - С. 29-38.
  34. Ладодо К. С., Барашнева С. М. Успехи диетотерапии в лечении наследственных заболеваний обмена у детей//Вестн. АМН СССР.- 1978. - № 3. - С. 55-60.
  35. Лильин Е. Т., Мексин В. А., Ванюков М. М. Фармакокинетика сульфалена. Связь между скоростью биотрансформации сульфалена и некоторыми фенотипическими признаками//Хим.-фарм. журн. - 1980. - № 7. - С. 12-16.
  36. Лильин Е. Т., Трубников В. И., Ванюков М. М. Введение в современную фармакогенетику. - М.: Медицина, 1984. - 186 с.
  37. Лильин Е. Т., Островская А. А. Влияние наследственного отягощения на течение и эффективность лечения хронического алкоголиз-ма//Сов. мед. - 1988. - № 4. - С. 20-22.
  38. Медведь Р. И., Луганова И. С. Случай острой гемолитической анемии - фавизма в Ленинградской области//Вопр. гематол. и переливания крови. - 1969. -Т. 14, № 10. - С. 54-57.
  39. Методические рекомендации по организации в Белоруссии медико-генетического обследования детей с хромосомными болезнями. - Минск, 1976. - 21с.
  40. Никитин Ю. П., Лисиченко О. В., Коробкова Е. Н. Клинико-генеалогический метод в медицинской генетике. Новосибирск: Наука, 1983. - 100 с.
  41. Основы цитогенетики человека / Под ред. А. А. Прокофьевой-Бельговской. - М.: Медицина, 1969. - 544 с.
  42. Покровский А. А. Метаболические аспекты фармакологии и токсикологии пищи. - М.: Медицина, 1979. - 183 с.
  43. Спиричев В. Б. Наследственные нарушения обмена и функции витаминов//Педиатрия. - 1975. - № 7. - С. 80-86.
  44. Столин В. В. Самосознание личности. - М.: Изд-во МГУ, 1983. - 284 с.
  45. Таболин В. А., Бадалян Л. О. Наследственные болезни у детей. - М.: Медицина, 1971. - 210 с.
  46. Фармакогенетика. Серия технических докладов ВОЗ, № 524. - Женева, 1975. - 52 с.
  47. Холодов Л. Е., Лильин Е. Т.. Мексин В. А., Ванюков М. М. Фармакогенетика сульфалена. II Популяционно-генетический аспект//Генетика. - 1979. - Т. 15, № 12. - С. 2210-2214.
  48. Шварц Е. И. Итоги науки и техники. Генетика человека/Под ред. Н. П. Бочкова. - М.: ВИНИТИ АН ССР, 1979.-Т. 4.- С. 164-224.
  49. Эфроимсон В. П., Блюмина М. Г. Генетика олигофрений, психозов, эпилепсий. - М.: Медицина, 1978. - 343 с.
  50. Asberg М., Evans D.. Sjogvest F. Genetic control of nortriptiline plasma levels in man: a study of proposit with high plasma concentration//J. med. Genet.- 1971. - Vol. 8. - P. 129-135.
  51. Beadl J., Tatum T. Genetic control of biochemical reactions in neurospora//Proc. Nat. Acad. Sci. - 1941, - Vol. 27. - P. 499-506.
  52. Bourne J., Collier H.. Somers G. Succinylcholine muscle relaxant of short action//Lancet.- 1952. - Vol. 1. - P. 1225-1226.
  53. Conen P., Erkman B. Frequency and occurrence of chromosomal syndromes D-trisomy//Amer. J. hum. Genet. - 1966. - Vol. 18. - P. 374-376.
  54. Cooper D., Schmidtke Y. Diagnosis of genetic disease using recombinant DNA//Hum. genet. - 1987. - Vol. 77. - P. 66-75.
  55. Costa Т., Seriver C.. Clulds B. The effect of mendelian disease on human health: a measurement//Amer. J. med. Genet. - 1985. - Vol. 21. - P. 231-242.
  56. Drayer D., Reidenberg M. Clinical consequences of polymorphic acety-lation of basic drugs//Clin. Pharmacol. Ther.- 1977. - Vol. 22, N. 3. - P. 251-253.
  57. Evans D. An improved and simplified method of detecting the acetylator phenotype//J. med. Genet.- 1969. - Vol. 6, N 4. - P. 405-407.
  58. Falconer D. S. Introduction to quantitative genetics. - London: Oliver and Boyd, 1960. - 210 p.
  59. Ford С. E., Hamarton J. L. The chromosomes of man//Acta genet, et statistic, med. - 1956. - Vol. 6, N 2. - P. 264.
  60. Garrod A. E. Inborn errors of metabolism (Croonian Lectures)//Lancet. - 1908. - Vol. 1, N 72. - P. 142-214.
  61. Jacobs P. A., Baikie A. J. Court Brown W. M. et al. Evidence of existence of human "superfemale"//Lancet. - 1959. - Vol. 2. - P. 423.
  62. Kaousdian S., Fabsetr R. Hereditability of clinical chemistries in an older twin//J. Epidemiol. - 1987. - Vol. 4, N 1, -P. 1 - 11.
  63. Karon М., Imach D., Schwartz A. Affective phototherapy in congenital nonobstructive, nonhemolytic jaundice//New Engl. J. Med. - 1970. - Vol. 282. - P. 377-379.
  64. Lejeune J., Lafourcade J., Berger R. et al. Trios cas de deletion du bras court d’une chromosome 5//C. R. Acad. Sci.- 1963. - Vol. 257.- P. 3098-3102.
  65. Mitchcel J. R., Thorgeirsson U. P., Black М., Timbretl J. Increased incidence of isoniazid hepatitis in rapid acetylators: possible relation to hydranize//Clin. Pharmacol. Ther. - 1975. - Vol. 18, N 1. - P. 70-79.
  66. Mitchell R. S., Relmensnider D., Harsch J., Bell J. New information on the clinical implication of individual variation in the metabolic handing of antituberculosis drug, particularly isoniazid//Transactions of Conference of the Chemotherapy of Tuberculosis. - Washington: Veter. Administ., 1958.- Vol. 17.- P. 77-81.
  67. Moore К. L., Barr M. L. Nuclear morphology, according to sex, in human tissues//Acta anat. - 1954. - Vol. 21. - P. 197-208.
  68. Serre H., Simon L., Claustre J. Les urico-frenateurs dans le traitement de la goutte. A propos de 126 cas//Sem. Hop. (Paris).- 1970.- Vol. 46, N 50. - P. 3295-3301.
  69. Simpson N. E., Kalow W. The "silent" gene for serum cholinesterase//Amer. J. hum. Genet. - 1964. - Vol. 16, N 7. - P. 180-182.
  70. Sunahara S., Urano М., Oqawa M. Genetical and geographic studies on isoniazid inactivation//Science. - 1961. - Vol. 134. - P. 1530- 1531.
  71. Tjio J. H., Leva N. A. The chromosome number of men//Hereditas. - 1956.- Vol. 42, N 1, - P. 6.
  72. Tocachara S. Progressive oral gangrene, probably due to a lack of catalase in the blood (acatalasaemia)//Lancet.- 1952. - Vol. 2.- P. 1101.

Генотерапия - совокупность генноинженерных (биотехнологических) и медицинских методов, направленных на внесение изменений в генетический аппаратсоматических клеток человека в целях лечения заболеваний . Это новая и бурно развивающаяся область, ориентированная на исправление дефектов, вызванныхмутациями (изменениями) в структуре ДНК, или придания клеткам новых функций.

Общие подходы к лечению наследственных болезней сходны с подходами к лечению болезней любой другой этиологии. При наследственных болезнях полностью сохраняется принцип индивидуализированного лечения, ведь врач и при наследственной патологии лечит не просто болезнь, а болезнь конкретного человека. Возможно, что при наследственной патологии принцип индивидуализированного лечения должен соблюдаться еще строже, потому что гетерогенность наследственных болезней далеко не расшифрована, а, следовательно, одну и ту же клиническую картину могут вызвать разные наследственные болезни с различным патогенезом. В зависимости от условий пре- и постнатального онтогенеза, а также от всего генотипа человека фенотипические проявления мутаций у конкретного человека могут модифицироваться в ту или другую сторону. Следовательно, необходима разная коррекция наследственной болезни у разных пациентов.

Как и при лечении других хорошо изученных болезней (например, инфекционных), можно выделить 3 подхода к лечению наследственных болезней и болезней с наследственной предрасположенностью: симптоматический, патогенетический, этиотропный. Применительно к наследственным болезням в отдельную группу можно выделить хирургические методы, поскольку иногда они выполняют функции симптоматической терапии, иногда - патогенетической, иногда - и той, и другой.

При симптоматическом и патогенетическом подходах используют все виды современного лечения (лекарственное, диетическое, рентгенорадиологическое, физиотерапевтическое, климатическое и т.д.). Генетический диагноз, клинические данные о состоянии больного и вся динамика болезни определяют поведение врача на протяжении всего периода лечения с постоянным и строгим соблюдением гиппократовского принципа «не навреди». При лечении наследственных болезней надо быть особенно внимательным в соблюдении этических и деонтологических норм: часто такие больные имеют тяжелую хроническую патологию с детского возраста.

Симптоматическое лечение применяют

при всех наследственных болезнях, даже если врач располагает методами патогенетической терапии. Для многих форм наследственной патологии симптоматическое лечение остается единственным.

СИмптоматическое лечение

Лекарственная симптоматическая терапия разнообразна и зависит от формы наследственных болезней. Один из древних примеров симптоматической терапии, сохранившейся до наших дней, - применение колхицина при острых приступах подагрического артрита. Такое лечение использовали еще греки в античном периоде. Другими примерами симптоматического лечения могут быть применение анальгетиков при наследственных формах мигрени, специфических транквилизаторов при психических проявлениях наследственных болезней, противосудорожных препаратов при судорожных симптомах и т.д. Успехи этого раздела терапии связаны с прогрессом фармакологии, обеспечивающим все более широкий выбор лекарств. Вместе с тем расшифровка патогенеза каждой болезни позволяет понять причину возникновения симптома, а на этой основе становится возможной более тонкая лекарственная коррекция симптомов, если первичная патогенетическая терапия еще невозможна.

ПАТОГЕНЕТИЧЕСКОЕ ЛЕЧЕНИЕ

Лечение любых болезней путем вмешательства в патогенез всегда эффективнее, чем симптоматическое лечение. При наследственных болезнях патогенетические методы также наиболее обоснованы, хотя и не противопоставляются симптоматическому лечению. По мере изучения патогенеза каждой болезни появляются различные возможности вмешательства в этот процесс, в течение болезни или в выздоровление. Клиническая медицина развивалась на основе теоретических представлений о патологических процессах. Таким же путем идет клиническая генетика в разработке методов лечения.

ри патогенетических подходах к лечению наследственных болезней исходят из того, что у больных либо образуется аномальный белок (фермент), либо нормального белка вырабатывается недостаточно (до полного отсутствия). За этими событиями следуют изменения цепи превращения субстрата или его продукта. Знание этих принципов и конкретных путей реализации действия гена помогает правильно разрабатывать схемы лечения и даже терапевтическую стратегию. Это особенно четко можно проследить на примере наследственных болезней обмена веществ.

ХИРУРГИЧЕСКОЕ ЛЕЧЕНИЕ

Хирургическое лечение наследственных болезней занимает существенное место в системе медицинской помощи больным. Это связано с тем, что, во-первых, многие формы наследственной патологии сопровождаются морфогенетическими отклонениями, включая пороки развития. Во-вторых, расширение возможностей хирургической техники сделало доступными многие трудные операции. В-третьих, реанимация и интенсивная терапия сохраняют жизнь новорожденным с наследственными болезнями, а такие пациенты нуждаются в последующей хирургической помощи.

Этиологическое лечение

Этиологическое лечение любых болезней является наиболее оптимальным, поскольку оно устраняет первопричину заболевания и полностью излечивает его. Несмотря на успехи симптоматического и патогенетического лечения наследственных болезней, вопрос об их этиологическом лечении не снимается. И чем глубже будут знания в области теоретической биологии, тем чаще будет подниматься вопрос о радикальном лечении наследственных болезней. Однако устранены причины наследственной болезни означает такое серьезное манипулирование с генетической информации у человека, как доставка нормального гена в клетку, выключение мутантного гена, обратная мутация патологического аллеля. Эти задачи достаточно трудны даже при манипулировании с простейшими организмами. К тому же, чтобы провести этиологическое лечение какой-либо наследственной болезни, надо изменить структуру ДНК не в одной клетке, а во многих функционирующих клетках (и только функционирующих!). Прежде всего для этого нужно знать, какое изменение произошло в гене в результате мутации, т. е. наследственная болезнь должна быть описана в химических формулах. Сложности этиологического лечения наследственных болезней очевидны, хотя уже имеются многочисленные возможности для их решения, создаваемые успешной разработки проекта "Геном человека" и новым направлениям в теоретической и клинической медицине генной терапией

Знание генетической природы многих врожденных биохимических дефектов позволяет вплотную подойти к проблеме их лечения и профилактики (рис. 10). Как уже говорилось ранее, последствия генной мутации для организма во многих случаях сводятся к накоплению в результате ферментной недостаточности больших количеств какого-либо вещества. Так, например, при фенилкетонурии высокие концентрации фенилаланина и фенилпирувата в тканях ведут к подавлению процессов усвоения глюкозы и в силу этого к энергетическому голоду. Для того чтобы уменьшить концентрацию этих веществ в организме, сразу по выявлении фенилкетону-рии ребенку назначают диету, содержащую очень малые количества фенилаланина. При использовании такой «синтетической» диеты в течение ряда лет клинические проявления фенилкетонурии у таких детей выражены слабо или совсем отсутствуют.

Другим методом лечения является стимуляция остаточной активности мутантного фермента. Так, при генетическом дефекте глюкозо-6-фосфатазы печени, одной из форм гликогенозов у детей, применяется индукция 1 аномального фермента с помощью кортизона - гормона надпочечников. При гомоцистинурии были проведены исследования цистатионинсинтетазы - фермента, дефектного при этом заболевании. В результате была разработана схема лечения витамином Вб, основанная на индукции активности мутантного фермента, и достигнуто значительное клиническое улучшение.

К сожалению, в большинстве случаев известных генных биохимических дефектов не представляется возможным подобрать соответствующую диету или индуцировать неактивный фермент. В связи с этим постоянно предпринимаются попытки изыскать способ доставки нормального фермента к месту его обычной деятельности в организме. При ряде генных мутаций был получен временный успех при вливании больным массы нормальных белых кровяных клеток.

Индукция - стимуляция синтеза данного фермента в ответ на специфическое воздействие.

В настоящее время имеется возможность очистки и выделения в достаточно чистом виде многих ферментов. Для защиты этих белков на их пути к тканям больных от разрушения сывороточными ферментами используются различные биологические «капсулы».

«Генная инженерия», ее принципы и трудности. Специалисты по генетике микробов уже давно используют феномен генетической трансформации и трансдукции. Генетическая трансформация отдельных признаков бактерий происходит при добавлении к ним ДНК другой разновидности. Например, у пневмококков, не имеющих слизистой оболочки, она появляется через некоторое время после обработки их препаратом ДНК, полученным из бактерий «слизистой» линии. Генетическая трансформация возможна и для клеток человека. ДНК, трансформирующая генетические признаки, по-видимому, включается в геном клеток и активно функционирует как генетическая единица. Однако «приживление» генов подобным образом в цельном организме больного-мутанта очень затруднительно. Дело в том, что в биологических жидкостях и клетках высокоактивны ДНК-азы - ферменты, разрушающие введенную ДНК.

Трансдукция генов до недавних пор казалась возможной только в мире бактерий. Понятие «трансдукция» можно определить как перенос одного или группы генов из одной клетки в другую с помощью вируса. Наиболее подробно изучена трансдукция генов с участием одного из вирусов кишечной палочки человека, известного как фаг «лямбда».

При заражении фагом «лямбда» бактериальной клетки ДНК вируса встраивается в кольцевую хромосому клетки-хозяина. Зараженная клетка не погибает и, размножаясь, воспроизводит в несметном числе геном фага. Когда вирус опять активируется и разрушает клетку-хозяина, то ново-образующиеся частицы фага, кроме своих генов, могут содержать и гены бактерии. Так удалось получить линии фага «лямбда», имеющие в своем

составе ген галактозо-1-фосфатуридилтрансферазы - важного фермента обмена сахаров.

Трансплантация этого гена в клетки человека удалась в 1971 г. американским ученым Мериллу, Гейеру и Петриччиани. Объектом в этих опытах служили клетки кожи больных с отсутствием активности галактозо-1 -фосфатуридилтрансферазы (галактоземия). Донором служил упомянутый фаг «лямбда», содержащий данный ген микробного происхождения. В зараженных клетках больных галактоземией появилась активность галактозо-1-фосфатуридилтрансферазы. Таким образом, пересадка гена от бактерии человеку стала фактом. Приобретенная клетками активность фермента наследовалась дочерними клетками, т. е. пересаженный ген не «отторгался».

Сенсационное сообщение американских ученых вызвало широкий интерес. Открылась перспектива лечения тяжелых врожденных ошибок обмена веществ. Однако работы в этом направлении не сулят скорых успехов. Проблема заключается в получении достаточного ассортимента вирусов, несущих определенные гены, способных интегрироваться в геном человеческих клеток в организме.

В последнее время были разработаны методики синтеза отдельных генов. Так, из красных кровяных телец кролика были выделены полирибосомы, а из них - и-РНК глобина (белковой части гемоглобина). Из этих дифференцированных клеток ее сравнительно легко выделить. Далее с помощью вирусного фермента РНК-зависимой ДНК-полимеразы американскими учеными впервые была синтезирована ДНК копия этой и-РНК. Однако данным методом можно получить лишь структурный участок гена без важных регуляторных «придатков». Тем не менее методы получения генов «в пробирке» представляют большой интерес.

Медико-генетическая консультация. Несмотря на существенные успехи в лечении наследственных заболеваний, ведущая роль в борьбе с ними принадлежит профилактике. В этом направлении достигнуты значительные успехи.

Профилактические мероприятия могут проводиться в различных направлениях. Сюда относится изучение конкретных механизмов мутационного процесса, контроль за уровнем радиации и -воздействием различных мутагенов. Патологическое развитие организма, смерть эмбриона, плода или ребенка могут быть вызваны любым из известных типов мутаций. Мутации, ведущие к гибели плода во время внутриутробного периода или вскоре после рождения, называют летальными. Изучение механизмов летальных эффектов хромосомных и генных мутаций еще только начато, но имеет большое значение для Профилактики наследственной патологии.

Не менее важной является профилактика инфекций и травм, способствующих во многих случаях проявлению или ухудшению течения наследственного заболевания. Вредное воздействие факторов внешней среды, взаимодействующих с генетическими факторами, особенно сказывается в эмбриональном периоде развития организма. Существенно влияет и пожилой возраст матери, увеличивающий риск появления у нее больного потомства.

Наибольшее значение для профилактики наследственных заболеваний имеет в настоящее время медико-генетическое консультирование. С этой целью развернуты специальные медико-генетические консультации или медико-генетические кабинеты при крупных лечебно-профилактических объединениях, где имеется возможность проведения специальных методов исследования - цитологического, биохимического и иммунологического.

Генетическое консультирование с профилактической целью наиболее эффективно не тогда, когда обращаются после рождения больного ребенка, а тогда, когда оценивается степень риска рождения у родительской пары детей с какими-либо генетическими дефектами, особенно в тех случаях, когда в семье имеется или предполагается наследственная патология.

Вопросы о медико-генетическом прогнозе для потомства могут возникать и у лиц, состоящих в кровнородственном браке, у супругов, имеющих несоответствие по резус-фактору крови, а также в случаях наличия у женщин повторных выкидышей и мертворожденных. В настоящее время доказана значительная роль хромосомных аномалий в мертворождаемости и самопроизвольных абортах.

Медико-генетическое консультирование базируется на установлении характера наследования в каждом конкретном случае. Расчет риска заболевания определяется

степенью его наследственной обусловленности и типом наследственной передачи. При доминантном наследовании патологического гена 50% детей будут больными и передадут свое заболевание последующему поколению. Остальные 50% останутся здоровыми и будут иметь вполне здоровое потомство.

При аутосомно-рецессивном наследовании в случаях, если оба родителя являются гетерозиготными носителями мутантного гена, 25% их детей будут больными (гомозиготами), 50% являются фенотипически здоровыми, но являются гетерозиготными носителями по тому же мутантному гену, который могут передавать своему потомству, 25% остаются свободными от заболевания. При рецессивно передающихся заболеваниях противопоказаны кровно-родственные браки. С этой точки зрения представляется важной задачей выявление гетерозигот-ности у членов отягощенной семьи и вообще в популяции, так как именно гетерозиготные носители мутантного гена поддерживают постоянную концентрацию его в популяции.

При наследовании заболеваний, сцепленных с полом (Х-хромосомой), фенотипически здоровая женщина передает заболевание половине своих сыновей, которые являются больными. Половина ее дочерей также являются носителями мутантного гена, будучи внешне здоровыми.

Иногда дача заключения оказывается весьма сложной. Это обусловлено тем, что имеется ряд заболеваний, сходных по своему проявлению с наследственными, но вызванных воздействием факторов внешней среды (так называемые фенокопии); многие наследственные болезни имеют значительные вариации в своем проявлении (так называемый полиморфизм).

Далеко не каждое врожденное и не каждое семейное заболевания являются наследственными, так же как и не всякое заболевание с наследственной этиологией является врожденным или семейным. Особенно это касается врожденных уродств развития, которые в ряде случаев могут быть вызваны не генетическими механизмами, а патогенным воздействием на плод во время беременности. Так, в некоторых зарубежных странах у женщин, принимавших во время беременности снотворные препараты, рождались дети с уродствами.

Вероятность наследования патологического гена в отягощенной семье сохраняется для каждого последующего ребенка независимо от того, был ли здоровым или больным ранее родившийся ребенок.

В тех случаях, когда тип наследственной передачи мутантного гена не может быть установлен или носит полигенный характер, медико-генетическое консультирование основывается на эмпирически установленной вероятности риска рождения больного ребенка. Меди-ко-генетическое консультирование, основанное на вычислении степени риска заболевания у родственников больных, за последнее время все в большей степени конкретизируется благодаря расширению возможностей диагностики гетерозиготного носительства. Методы выявления гетерозиготного носительства разрабатываются давно, но надежное определение его стало возможным лишь в связи с прогрессом биохимических методов диагностики. В настоящее время более чем при 200 заболеваниях установлено гетерозиготное носительство, что является необходимым для научно обоснованной медико-генетической консультации.

Весьма перспективным методом профилактики наследственных заболеваний можно считать пренатальную диагностику. При подозрении на рождение ребенка с наследственным дефектом проводят на 14-16-й неделе беременности амниоцентез и получают определенное количество околоплодной жидкости. В ней содержатся слущенные клетки эпителия зародыша. Исследование этого материала позволяет определить наследственный дефект еще до рождения ребенка. В настоящее время этим методом можно диагностировать более 50 наследственных заболеваний обмена веществ и все хромосомные болезни.

Врач, дающий медико-генетический совет, разъясняет консультируемому степень риска возникновения заболевания у его детей или родственников. Окончательное решение принадлежит самому консультируемому, врач не может запретить ему иметь детей, а только помогает реально оценить степень опасности. При правильном медико-генетическом разъяснении обычно больной сам приходит к правильному решению. Значительную роль при этом играет не только величина степени риска, но и тяжесть наследственной патологии:

значительные уродства, глубокой степени слабоумие. В этих случаях, особенно если в семье имеется такой ребенок, даже при редко встречающемся заболевании супруги ограничивают дальнейшее деторождение. Иногда бывает и так, что степень риска рождения ребенка с наследственной патологией преувеличивается членами семьи и совет врача рассеивает необоснованные опасения.