Главная · Спорт и Фитнес · Кто и когда изобрел микроскоп? История создания микроскопа и его устройство

Кто и когда изобрел микроскоп? История создания микроскопа и его устройство

В XXI веке развитие биологии идет семимильными шагами. Сегодня эта профессия снова обрела популярность, многие родители стремятся направить своих юных ученых именно по этой стезе. И действительно, новости об открытиях приходят практически ежедневно из всех уголков земного шара. Человечество взрослеет в интеллектуальном плане. Те, кто изобрел микроскоп - настоящие гении и профессионалы, они позволили цивилизации расти не только в медицине и области знаний об эволюции, но и во всех других научных и промышленных отраслях. Благодаря им формы жизни активно изучаются как на клеточном, так и на молекулярном уровне, кроме того достигнуты колоссальные результаты в металлургии, геологии, машиностроении. Их имена заслуживают уважения целых поколений, которым дано счастье пользоваться современными благами.

Кто изобрел микроскоп - пожалуй, именно с этого молодым биологам, смышленым детям и просто любознательным интеллектуалам следует начать свое удивительное путешествие в микромир, таящий в себе множество тайн и загадок, удивляющий и восхищающий не зависимо от возраста наблюдателя. Это полезное изобретение стало плодом многолетний кропотливой работы сразу нескольких изобретателей, гениальное попадание в цель, которую другие попросту не видели. Вспомним их и рассмотрим неоценимый вклад каждого.

Будучи неравнодушным к астрономии, Галилео Галилей разработал и сконструировал телескоп, оптическая схема которого в скором времени была использована в первых составных микроскопах. Доработанное устройство было названо «маленьким глазом» или «Оккиолино». Можно ли при этом утверждать, что он его изобрел в 1609 г., являясь весьма далеким от каких-либо биологических экспериментов (за исключением, может быть, наблюдения насекомых, являвшимся хобби)? С некоторой натяжкой, наверное, да. И большинство энциклопедий едины в своем мнении.

Более чем 6 десятилетий спустя, Антони ван Левенгук изобрел усовершенствованный микроскоп, способный показывать клетки растений и даже одноклеточные организмы, например, эвглен, инфузорий. По своей сути это был прибор, состоящий из отшлифованной линзы, закрепленной на металлической пластине. Не смотря на очевидную простоту, он был самый мощный, выдававший увеличение более чем в 270 крат! Образцы подсвечивались с помощью естественного света, направленного на них из открытого окна или горящей свечки.

Начиная с 1870-х г, после разработки Эрнстом Аббе теории о микроскопии, производители получают готовую технологию, и немецкая компания Carl Zeiss впервые берется за серийное производство, обеспечив себе лидерство и даже монополию на долгие годы вперед.

XIX и XX вв. ознаменовались созданием специализированных микроскопов, например, поляризационных, люминесцентных, металлографических. Помимо классических методов исследования (светлое и темное поле) получил широкое применение фазового контраста. В условиях современности изображение фиксируется в цифровом виде - делаются фотографии и видеоролики. Это оказалось возможным после появления видеоокуляра, позволяющего выводить картинку на экран компьютера в режиме on-line.

Микроскоп – уникальный оптический прибор, позволяющий рассмотреть, изучить и измерить мельчайшие предметы и структуры, невидимые человеческим глазом. С помощью него было сделано множество открытий, изменивших судьбу человечества, появилась новая наука – микробиология. Известно, что , позволяющее увеличивать предметы в сотни и тысячи раз, совершенствовалось на протяжении многих лет. В данной статье рассмотрим, кто изобрел первый микроскоп и положил начало изучению недоступных глазу человека объектов Вселенной.

История создания первого микроскопа

О том, что изогнутые поверхности способны зрительно увеличивать предметы, было известно еще до нашей эры. В 1550 году эти необычные свойства нашли свое применение в устройстве, сооруженном голландским мастером по изготовлению очков. Звали его Ханс Янсен, с помощью своего сына он изготовил прибор, позволяющий добиться увеличения объектов в 30 раз. Это стало возможным благодаря использованию двух линз, помещенных в одну трубку. Первая из них увеличивала исследуемый объект, а вторая усиливала действие, делая полученное изображение больше. Однако сконструированный прибор не нашел широкого применения, поэтому история изобретения микроскопа продолжилась в трудах других исследователей:

  • Галилео Галилей – создал прибор, состоящий из двух видов линз. Выпуклые и вогнутые оптические элементы позволяли добиться лучшего изображения и большего увеличения объектов. Произошло это событие в 1609 году;
  • Корнелиус Дреббель – внес в составной микроскоп существенную доработку, применив для увеличения две выпуклые линзы;
  • Кристиан Гюйгенс – разработал регулируемую систему окуляров, что стало огромным прорывом в области изучения микромира.

Все вышеназванные исследователи внесли неоценимый вклад в создание важного оптического прибора. Однако история изобретения и распространения микроскопа начинается с устройств, созданных Левенгуком. Знаменитый голландец не был ученым, его открытия основаны только на любительском интересе. Микроскоп Левенгука имел всего одну, но очень сильную линзу, которая позволяла увеличить изображение в несколько сотен раз. Подобное устройство давало возможность рассмотреть объект исследования подробно и четко. С помощью него Левенгук обнаружил эритроциты в человеческой крови, рассмотрел волокна мышечной ткани, а также впервые увидел бактерии. Данный микроскоп был первым устройством подобного рода, ввезенным в Россию по приказу Петра I. Неоспоримым его преимуществом перед составным микроскопом было отсутствие дефектов изображения, порождаемых несколькими линзами.

Современные открытия и достижения

Современные микроскопы значительно изменились и усовершенствовались по сравнению с самыми первыми моделями. Появились электронные устройства, которые позволяют многократно увеличить изображение, используя вместо света поток электронов. Кто изобрел электронный микроскоп? В 30-е годы XX столетия немецкий инженер Р. Руденберг запатентовал просвечивающее устройство с фокусировкой электронов. Этот прибор был назван световым микроскопом и стал широко применяться во многих научных исследованиях.

Еще более совершенной моделью является наноскоп. Это самый современный вид оптического микроскопа, позволяющий наблюдать за фантастически малыми объектами. С помощью этого прибора стало возможным изучать элементы микромира, имеющие размеры менее 10 нанометров. Кроме этого, устройство позволяет получить качественные трехмерные изображения . Какой ученый впервые изобрел микроскоп, имеющий такие возможности? Над открытием наноскопа трудилась целая группа ученых, руководил которой немецкий исследователь Штефан Хелль. Известный изобретатель и доктор физических наук, он получил Нобелевскую премию за неоценимый вклад в развитие оптической техники.

С помощью современных приборов стало возможным наблюдать уникальные явления и делать сенсационные открытия. Ученые смогли проследить движение отдельных молекул внутри клетки, получить четкое изображение атома, а также зафиксировать молекулярные изменения в ходе химической реакции. Безусловно, тот, кто изобрел первый микроскоп, внес неоценимый вклад в развитие всего человечества.

Изобретение микроскопа началось с того, что однажды Галилей соорудил очень длинную подзорную трубу. Дело происходило днем. Закончив работу, он навел трубу на окно, чтобы на свету проверить чистоту линз. Прильнув к окуляру, Галилей оторопел: все поле зрения занимала какая-то серая искрящаяся масса. Труба немного покачнулась, и ученый увидел огромную голову с выпуклыми черными глазами по бокам. У чудовища было черное, с зеленым отливом туловище, шесть коленчатых ног… Да ведь это … муха! Отняв трубу от глаза, Галилей убедился: на подоконнике действительно сидела муха.

Так появился на свет микроскоп - состоящий из двух линз прибор для увеличения изображения маленьких предметов. Свое название - «микроскопиум» - он получил от члена «Академиа деи линчеи» («академии рысьеглазых»)

И. Фабера в 1625 г. Это было научное общество, которое, кроме прочего, одобряло и поддерживало применение оптических приборов в науке.

А сам Галилей в 1624 г. вставил в микроскоп более короткофокусные (более выпуклые) линзы, благодаря чему труба стала короче.

Роберт Гук и его достижения

Следующая страница в истории создании микроскопа связана с именем Роберта Гука. Это был очень одаренный человек и талантливый ученый. Наиболее значимыми достижениями Гука являются следующие:

  • изобретение спиральной пружины для регулировки хода часов; создание винтовых зубчатых колес;
  • определение скорости вращения Марса и Юпитера вокруг своей оси; изобретение оптического телеграфа;
  • создание прибора для определения пресности воды; создание термометра для измерения низких температур;
  • установление постоянства температур таяния льда и кипения воды; открытие закона деформации упругих тел; предположение о волновой природе света и природе земного тяготения.

По окончании Оксфордского университета в 1657 г. Гук стал помощником Роберта Бойля. Это была отличная школа у одного из крупнейших ученых того времени. В 1663 г. Гук уже работал секретарем и демонстратором опытов Английского Королевского общества (академии наук). Когда там стало известно о микроскопе, Гуку поручили провести наблюдения на этом приборе. Имевшийся в его распоряжении микроскоп мастера Дреббеля являл собой полуметровую позолоченную трубу, расположенную строго вертикально. Работать приходилось в неудобной позе - изогнувшись дугой.

Совершенствование микроскопа Гуком

Прежде всего Гук сделал трубу - тубус - наклонной. Чтобы не зависеть от солнечных дней, которых в Англии бывает немного, он установил перед прибором масляную лампу оригинальной конструкции. Однако солнце светило все же гораздо ярче. Поэтому пришла мысль лучи света от лампы усилить, сконцентрировать. Так появилось очередное изобретение Гука - большой стеклянный шар, наполненный водой, а за ним специальная линза. Такая оптическая система в сотни раз усиливала яркость освещения.

Находчивый Гук легко справлялся с любыми трудностями, появлявшимися на его пути. Например, когда понадобилось сделать очень маленькую линзу идеально круглой формы, он опустил острие иглы в расплавленное стекло и затем быстро вынул ее - на кончике иголки сверкала капелька. Гук подшлифовал ее немного - и линза была готова. А когда возникла необходимость улучшить качество изображения в микроскопе, то Гук между двумя традиционными линзами - объективом и окуляром - вставил третью, коллектив, и изображение стало более четким, при этом увеличилось поле зрения.

Когда микроскоп был готов, Гук принялся за наблюдения. Их результаты он описал в своей книге «Микрография», изданной в 1665 г. За 300 лет она переиздавалась десятки раз. Помимо описаний, она содержала замечательные иллюстрации - гравюры самого Гука.

Обнаружения и открытия, строение клетки

Особый интерес в ней представляет наблюдение № 17 - «О схематизме, или строении пробки и о клетках и порах некоторых других пустых тел». Гук так описывает срез обыкновенной пробки: «Вся она перфорированная и пористая, подобно сотам, но поры ее неправильной формы, и в этом отношении она напоминает соты… Далее, эти поры, или клетки, неглубоки, но состоят из множества ячеек, разделенных перегородками».

В этом наблюдении бросается в глаза слово «клетка». Так Гук назвал то, что и сейчас называется клетками, например, клетки растений. В те времена люди не имели об этом ни малейшего представления. Гук первым наблюдал их и дал название, оставшееся за ними навсегда. Это было открытие громадной важности.

Наблюдения Антони ван Левенгука

Вскоре после Гука начал вести свои наблюдения голландец Антони ван Левенгук. Это была интересная личность - он торговал тканями и зонтиками, но не получил никакого научного образования. Зато у него был пытливый ум, наблюдательность, настойчивость и добросовестность. Линзы, которые он сам шлифовал, увеличивали предмет в 200-300 раз, то есть в 60 раз лучше применявшихся тогда приборов. Все свои наблюдения он излагал в письмах, которые аккуратно посылал в Лондонское королевское общество. В одном из своих писем он сообщил об открытии мельчайших живых существ - анималькул, как Левенгук их назвал.

Оказалось, что анималькули присутствуют повсюду-в земле, растениях, теле животных. Это событие произвело революцию в науке - были открыты микроорганизмы.

В 1698 г. Антони ван Левенгук встретился с российским императором Петром I и продемонстрировал ему свой микроскоп и анималькул. Император был так заинтересован всем, что он увидел и что объяснил ему голландский ученый, что закупил для России микроскопы голландских мастеров. Их можно увидеть в Кунсткамере в Петербурге.

Левенгуку принадлежит еще одно важное открытие. Нагревая воду до кипения, он обратил внимание, что практически все анималькулы погибают. Значит, таким способом можно избавляться от болезнетворных микроорганизмов в воде, которую пьют люди.

Камера-обскура

Заканчивая разговор об оптических инструментах, необходимо упомянуть камеру-обскуру, изобретенную в 1420 г. итальянским инженером Дж. Фонтаной. Камера-обскура является простейшим оптическим приспособлением, позволяющим получать на экране изображения предметов. Это темный ящик с небольшим отверстием в одной из стенок, перед которым помещают рассматриваемый объект. Исходящие от него лучи света проходят через отверстие и создают на противоположной стене ящика (экране) перевернутое изображение объекта.

В 1558 г. итальянец Дж. Порта приспособил камеру-обскуру для исполнения рисунков. Ему же принадлежит идея применения камеры-обскуры для проецирования рисунков, помещенных у отверстия камеры и сильно освещаемых свечами или солнцем.

Что ни говорите, а микроскоп является одним из важнейших инструментов ученых, одним из главных их оружий в познании окружающего мира. Как появился первый микроскоп, какая история микроскопа от средних веков и до наших дней, какое строение микроскопа и правила работы с ним, ответы на все эти вопросы Вы найдете в нашей статье. Итак, приступим.

История создания микроскопа

Хотя первые увеличительные линзы, на основе которых собственно и работает световой микроскоп, археологи находили еще при раскопках древнего Вавилона, тем не менее, первые микроскопы появились в Средневековье. Что интересно, среди историков нет согласия по поводу того, кто первым изобрел микроскоп. Среди кандидатов на эту почтенную роль такие известные ученые и изобретатели как Галилео Галилей, Христиан Гюйгенс, Роберт Гук и Антонии ван Левенгук.

Стоит также упомянуть итальянского врача Г. Фракосторо, который еще в далеком 1538 году первым предложил совместить несколько линз, чтобы получить больший увеличительный эффект. Это еще не было созданием микроскопа, но стало предтечей его возникновения.

А в 1590 году некто Ханс Ясен, голландский мастер по созданию очков заявил, что его сын – Захарий Ясен — изобрел первый микроскоп, для людей Средневековья такое изобретение было сродни маленькому чуду. Однако, ряд историков сомневается в том, является ли Захарий Ясен истинным изобретателем микроскопа. Дело в том, что в его биографии немало темных пятен, в том числе пятен и на его репутации, так современники обвиняли Захарию в фальшивомонетчестве и краже чужой интеллектуальной собственности. Как бы там ни было, но точно узнать был ли Захарий Ясен изобретателем микроскопа или нет, мы, к сожалению, не можем.

А вот репутация Галилео Галилея в этом плане безупречна. Этого человека мы знаем, прежде всего, как, великого астронома, ученого, гонимого католической церковью за свои убеждения о том, что Земля вращается вокруг , а не наоборот. Среди важных изобретений Галилея — первый телескоп, с помощью которого ученый проник своим взором в космические сферы. Но сфера его интересов не ограничивалась лишь звездами и планетами, ведь микроскоп, это по сути тот же телескоп, но только наоборот. И если с помощью увеличительных линз можно наблюдать за далекими планетами, то почему бы не обратить их мощь в другое направление – изучить то, что находится у нас «под носом». «Почему бы и нет», — наверное, подумал Галилей, и вот, в 1609 году он уже представляет широкой публике в Академии деи Личеи свой первый составной микроскоп, который состоял из выпуклой и вогнутой увеличительных линз.

Старинные микроскопы.

Позднее, спустя 10 лет, голландский изобретатель Корнелиус Дреббель усовершенствовал микроскоп Галилея, добавив в него еще одну выпуклую линзу. Но настоящую революцию в развитии микроскопов совершил Христиан Гюйгенс, голландский физик, механик и астроном. Так он первым создал микроскоп с двухлинзовой системой окуляров, которые регулировались ахроматически. Стоит заметить, что окуляры Гюйгенса применяются и по сей день.

А вот знаменитый английский изобретатель и ученый Роберт Гук навеки вошел в историю науки, не только как создатель собственного оригинального микроскопа, но и как человек, сделавший при его помощи великое научное открытие. Именно он первым увидел через микроскоп органическую клетку, и предположил, что все живые организмы состоят из клеток, этих мельчайших единиц живой материи. Результаты своих наблюдений Роберт Гук опубликовал в своем фундаментальном труде – Микрографии.

Опубликованная в 1665 году Лондонским королевским обществом, эта книга тут же стала научным бестселером тех времен и произвела подлинный фурор в научном сообществе. Еще бы, ведь в ней имелись гравюры с изображением увеличенной в микроскоп блохи, вши, мухи, клетки растения. По сути, этот труд представлял собой удивительное описание возможностей микроскопа.

Интересный факт: термин «клетка» Роберт Гук взял потому, что клетки растений ограниченные стенами напомнили ему монашеские кельи.

Так выглядел микроскоп Робета Гука, изображение из «Микрографии».

И последним выдающимся ученым, который внес свой вклад в развитие микроскопов, был голландец Антонии ван Левенгук. Вдохновленный трудом Роберта Гука, «Микрографией», Левенгук создал свой собственный микроскоп. Микроскоп Левенгука, хотя и обладал лишь одной линзой, но она была чрезвычайно сильной, таким образом, уровень детализации и увеличения у его микроскопа был лучшим на то время. Наблюдая в микроскоп живую природу, Левенгук сделал множество важнейших научных открытий в биологии: он первым увидел эритроциты, описал бактерии, дрожжи, зарисовал сперматозоиды и строение глаз насекомых, открыл инфузории и описал многие их формы. Работы Левенгука дали огромный толчок к развитию биологии, и помогли привлечь внимание биологов к микроскопу, сделали его неотъемлемой частью биологических исследований, аж по сей день. Такая в общих чертах история открытия микроскопа.

Виды микроскопов

Далее с развитием науки и техники стали появляться все более совершенные световые микроскопы, на смену первому световому микроскопу, работающему на основе увеличительных линз, пришел микроскоп электронный, а затем и микроскоп лазерный, микроскоп рентгеновский, дающие в разы более лучший увеличительный эффект и детализацию. Как же работают эти микроскопы? Об этом дальше.

Электронный микроскоп

История развития электронного микроскопа началась в 1931 году, когда некто Р. Руденберг получил патент на первый просвечивающий электронный микроскоп. Затем в 40-х годах прошлого века появились растровые электронные микроскопы, достигшие своего технического совершенства уже в 60-е годы прошлого века. Они формировали изображение объекта благодаря последовательному перемещению электронного зонда малого сечения по объекту.

Как работает электронный микроскоп? В основе его работы лежит направленный пучок электронов, ускоренный в электрическом поле и выводящий изображение на специальные магнитные линзы, этот электронный пучок намного меньше длины волн видимого света. Все это дает возможность увеличить мощность электронного микроскопа и его разрешающую способность в 1000-10 000 раз по сравнению с традиционным световым микроскопом. Это главное преимущество электронного микроскопа.

Так выглядит современный электронный микроскоп.

Лазерный микроскоп

Лазерный микроскоп представляет собой усовершенствованную версию электронного микроскопа, в основе его работы лежит лазерный пучок, позволяющий взору ученого наблюдать живые ткани на еще большой глубине.

Рентгеновский микроскоп

Рентгеновские микроскопы используются для исследования очень маленьких объектов, имеющих размеры сопоставимые с размерами рентгеновской волны. В основе их работы лежит электромагнитное излучение с длиной волны от 0,01 до 1 нанометра.

Устройство микроскопа

Конструкция микроскопа зависит от его вида, разумеется, электронный микроскоп будет отличаться своим устройством от светового оптического микроскопа или от рентгеновского микроскопа. В нашей статье мы рассмотрим строение обычного современного оптического микроскопа, который является наиболее популярным как среди любителей, так и профессионалов, так как с их помощью можно решить множество простых исследовательских задач.

Итак, прежде всего в микроскопе можно выделить оптическую и механическую части. К оптической части относится:

  • Окуляр – это та часть микроскопа, которая прямо связана с глазами наблюдателя. В самых первых микроскопах он состоял из одной линзы, конструкция окуляра в современных микроскопах, разумеется, несколько сложнее.
  • Объектив – практически самая важная часть микроскопа, так как именно объектив обеспечивает основное увеличение.
  • Осветитель – отвечает за поток света на исследуемый объект.
  • Диафрагма – регулирует силу светового потока, поступающего на исследуемый объект.

Механическая часть микроскопа состоит из таких важных деталей как:

  • Тубус, он представляет собой трубку, в которой заключается окуляр. Тубус должен быть прочным и не деформироваться, так как иначе пострадают оптические свойства микроскопа.
  • Основание, оно обеспечивает устойчивость микроскопа во время работы. Именно на него крепится тубус, держатель конденсатора, ручки фокусировки и другие детали микроскопа.
  • Револьверная головка – применяется для быстрой смены объективов, в дешевых моделях микроскопов отсутствует.
  • Предметный столик – это то место, на котором размещается исследованный объект или объекты.

А тут на картинке изображено более подробное строение микроскопа.

Правила работы с микроскопом

  • Работать с микроскопом необходимо сидя;
  • Перед работой микроскоп необходимо проверить и протереть от пыли мягкой салфеткой;
  • Установить микроскоп перед собой немного слева;
  • Начинать работу стоит с малого увеличения;
  • Установить освещение в поле зрения микроскопа, используя электроосветитель или зеркало. Глядя одним глазом в окуляр и пользуясь зеркалом с вогнутой стороной, направить свет от окна в объектив, а затем максимально и равномерно осветить поле зрения. Если микроскоп снабжен осветителем, то подсоединить микроскоп к источнику питания, включить лампу и установить необходимую яркость горения;
  • Положить микропрепарат на предметный столик так, чтобы изучаемый объект находился под объективом. Глядя сбоку, опускать объектив при помощи макровинта до тех пор, пока расстояние между нижней линзой объектива и микропрепаратом не станет 4-5 мм;
  • Передвигая препарат рукой, найти нужное место, расположить его в центре поля зрения микроскопа;
  • Для изучения объекта при большом увеличении, сначала нужно поставить выбранный участок в центр поля зрения микроскопа при малом увеличении. Затем поменять объектив на 40 х, поворачивая револьвер, так чтобы он занял рабочее положение. При помощи микрометренного винта добиться хорошего изображения объекта. На коробке микрометренного механизма имеются две черточки, а на микрометренном винте — точка, которая должна все время находиться между черточками. Если она выходит за их пределы, ее необходимо возвратить в нормальное положение. При несоблюдении этого правила, микрометренный винт может перестать действовать;
  • По завершении работы с большим увеличением, установить малое увеличение, поднять объектив, снять с рабочего столика препарат, протереть чистой салфеткой все части микроскопа, накрыть его полиэтиленовым пакетом и поставить в шкаф.

Изобретатель : Захариус Йансен
Страна : Голландия
Время изобретения : 1595 г.

Сегодня трудно представить себе научную деятельность человека без микроскопа. Микроскоп широко применяется в большинстве лабораторий медицины и биологии, геологии и материаловедения.

Полученные с помощью микроскопа результаты необходимы при постановке точного диагноза, при контроле над ходом лечения. С использованием микроскопа происходит разработка и внедрение новых препаратов, делаются научные открытия.

Микроскоп (от греческого mikros — малый и skopeo — смотрю) — оптический прибор для получения увеличенного изображения мелких объектов и их деталей, не видимых невооруженным глазом.

Глаз человека способен различать детали объекта, отстоящие друг от друга не менее чем на 0,08 мм. С помощью светового микроскопа можно видеть детали, расстояние между которыми составляет до 0,2 мкм. Электронный микроскоп позволяет получить разрешение до 0,1-0,01 нм.

Изобретение микроскопа, столь важного для всей науки прибора обусловлено, прежде всего, влиянием развития оптики. Некоторые оптические свойства изогнутых поверхностей были известны еще Евклиду (300 лет до н.э.) и Птоломею (127-151 гг.), однако их увеличительная способность не нашла практического применения. В связи с этим первые очки были изобретены Сальвинио дели Арлеати в Италии только в 1285 г. В 16 веке Леонардо да Винчи и Мауролико показали, что малые объекты лучше изучать с помощью лупы.

Первый микроскоп был создан лишь в 1595 году Захариусом Йансеном (Z. Jansen). Изобретение заключалось в том, что Захариус Йансен смонтировал две выпуклые линзы внутри одной трубки, тем самым, заложив основы для создания сложных микроскопов. Фокусировка на исследуемом объекте достигалось за счет выдвижного тубуса. Увеличение микроскопа составляло от 3 до 10 крат. И это был настоящий прорыв в области микроскопии! Каждый свой следующий микроскоп он значительно совершенствовал.

В этот период (XVI в.) датские, английские и итальянские исследовательские приборы постепенно начали свое развитие, закладывая фундамент современной микроскопии.

Быстрое распространение и совершенствование микроскопов началось после того, как Галилей (G. Galilei), совершенствуя сконструированную им , стал использовать ее как своеобразный микроскоп (1609-1610), изменяя расстояние между объективом и окуляром.

Позднее, в 1624 г., добившись изготовления более короткофокусных линз, Галилей значительно уменьшил габариты своего микроскопа.

В 1625 г. членом Римской «Академии зорких» («Akudemia dei lincei») И. Фабером был предложен термин «микроскоп». Первые успехи, связанные с применением микроскопа в научных биологических исследованиях, были достигнуты Гуком (R. Hooke), который первым описал растительную клетку (около 1665 г.). В своей книге «Micrographia» Гук описал устройство микроскопа.

В 1681 г. Лондонское королевское общество на своем заседании подробно обсуждало своеобразное положение. Голландец Левенгук (A. van Leenwenhoek) описывал изумительные чудеса, которые открывал своим микроскопом в капле воды, в настое перца, в иле реки, в дупле собственного зуба. Левенгук с помощью микроскопа обнаружил и зарисовал сперматозоиды различных простейших, детали строения костной ткани (1673-1677). Он писал:»С величайшим изумлением я увидел в капле великое множество зверюшек, оживленно двигающихся во всех направлениях, как щука в воде. Самое мелкое из этих крошечных животных в тысячу раз меньше глаза взрослой вши.»

Лучшие лупы Левенгука увеличивали в 270 раз. С ними он увидел впервые кровеносные тельца, движение крови в капиллярных сосудах хвоста головастика, полосатость мускулов. Он открыл инфузории. Он впервые погрузился в мир микроскопических одноклеточных водорослей, где лежит граница между животным и растением; где движущееся животное, как зеленое растение, обладает хлорофиллом и питается, поглощая свет; где растение, еще прикрепленное к субстрату, потеряло хлорофилл и заглатывает бактерии. Наконец, он видел даже бактерии и в великом разнообразии. Но, разумеется, тогда не было еще и отдаленной возможности понять ни значение бактерий для человека, ни смысла зеленого вещества — хлорофилла, ни границы между растением н животным.

Открывался новый мир живых существ, более разнообразный и бесконечно более оригинальный, чем видимый нами мир.

В 1668 г. Е. Дивини, присоединив к окуляру полевую линзу, создал окуляр современного типа. В 1673 г. Гавелий ввел микрометрический винт, а Гертель предложил под столик микроскопа поместить зеркало. Таким образом, микроскоп стали монтировать из тех основных деталей, которые входят в состав современного биологического микроскопа.

В середине 17 столетия Ньютон открыл сложный состав белого света и разложил его призмой. Рёмер доказал, что свет распространяется с конечной скоростью, и измерил ее. Ньютон высказал знаменитую гипотезу — неверную, как вам известно,- о том, что свет есть поток летящих частиц такой необычайной мелкости и частоты, что они проникают через прозрачные тела, как стекло через хрусталик глаза, и, поражая ретину ударами, производят физиологическое ощущение света. Гюйгенс впервые заговорил о волнообразной природе света и доказал, как естественно она объясняет и законы простого отражения и преломления, и законы двойного лучепреломления в исландском шпате. Мысли Гюйгенса и Ньютона встретились в резком контрасте. Таким образом, в XVII в. в остром споре действительно встала проблема о сущности света.

Как разгадка вопроса сущности света, так и усовершенствование микроскопа подвигались вперед медленно. Спор между идеями Ньютона и Гюйгенса продолжался целое столетие. К представлению о волновой природе света примкнул знаменитый Эйлер. Но решен был вопрос лишь через сто с лишним лет Френелем талантливым исследователем, какого знала наука.

Чем отличается поток распространяющихся волн — идея Гюйгенса — от потока несущихся мелких частиц — идея Ньютона? Двумя признаками:

1. Встретившись, волны могут взаимно уничтожиться, если горб одной ляжет на долину другой. Свет + свет, сложившись вместе, могут дать темноту. Это явление интерференции, это кольца Ньютона, непонятые самим Ньютоном; с потоками частиц этого быть не может. Два потока частиц — это всегда двойной поток, двойной свет.

2. Через отверстие поток частиц проходит прямо, не расходясь в стороны, а поток волн непременно расходится, рассеивается. Это дифракция.

Френель доказал теоретически, что расхождение во все стороны ничтожно, если волна мала, но все же и эту ничтожную дифракцию он обнаружил и измерил, а по ее величине определил длину волны света. Из явлений интерференции, которые так хорошо известны оптикам, полирующим до «одного цвета», до «двух полос», он также измерил длину волны — это полмикрона (половина тысячной доли миллиметра). И отсюда стали неоспоримыми волновая теория и исключительная тонкость и острота проникновения в сущность живого вещества. С тех пор все мы в разных модификациях подтверждаем и применяем мысли Френеля. Но и не зная этих мыслей, можно усовершенствовать микроскоп.

Так это и было в XVIII столетии, хотя события развивались очень медленно. Сейчас трудно даже представить себе, что первая труба Галилея, в которую он наблюдал мир Юпитера, и микроскоп Левенгука были простыми неахроматическими линзами.

Огромным препятствием в деле ахроматизации было отсутствие хорошего флинта. Как известно, ахроматизация требует двух стекол: крона и флинта. Последний представляет стекло, в котором одной из основных частей является тяжелая окись свинца, обладающая непропорционально большой дисперсией.

В 1824 г. громадный успех микроскопа дала простая практическая идея Саллига, воспроизведенная французской фирмой Шевалье. Объектив, раньше состоявший из одной линзы, расчленен на части, его начали изготовлять из многих ахроматических линз. Так умножено число параметров, дана возможность исправления ошибок системы, и стало впервые возможным говорить о настоящих больших увеличениях — в 500 и даже 1000 раз. Граница предельного видения передвинулась от двух к одному микрону. Далеко позади оставлен микроскоп Левенгука.

В 70-х годах 19 века победоносное шествие микроскопии связано с именем немецкого физика-оптика и астронома Эрнста Карла Аббе (Ernst Karl Abbe).

Достигнуто было следующее:

Во-первых, предельное разрешение передвинулось от полумикрона до одной десятой микрона.

Во-вторых, в построении микроскопа вместо грубой эмпирики введена высокая научность.

В-третьих, наконец, показаны пределы возможного с микроскопом, и эти пределы завоеваны.

Сформирован штаб ученых, оптиков и вычислителей, работающих при фирме Цейсса. В капитальных сочинениях учениками Аббе дана теория микроскопа и вообще оптических приборов. Выработана система измерений, определяющих качество микроскопа.

Когда выяснилось, что существующие сорта стекол не могут удовлетворить научным требованиям, планомерно созданы были новые сорта. Вне тайн наследников Гинана — Пара-Мантуа (наследники Бонтана) в Париже и Ченсов в Бирмингаме — созданы были вновь методы плавки , и дело практической оптики развито до такой степени, что можно сказать: Аббе оптическим снаряжением армии почти выиграл мировую войну 1914-1918 гг.

Наконец, призвав на помощь основы волновой теории света, Аббе впервые ясно показал, что каждой остроте инструмента соответствует свой предел возможности. Тончайший же из всех инструментов — это длина волны. Нельзя видеть объекты меньше полудлины волны — утверждает дифракционная теория Аббе,- и нельзя получить изображения меньше полудлины волны, т.е. меньше 1/4 микрона. Или с разными ухищрениями иммерсии, когда мы применяем среды, в которых длина волны меньше,- до 0,1 микрона. Волна лимитирует нас. Правда, лимиты очень мелкие, но все же это лимиты для деятельности человека.

Физик-оптик чувствует, когда на пути световой волны вставлен объект толщиной в тысячную, в десятитысячную, в отдельных случаях даже в одну стотысячную длину волны. Сама длина волны измерена физиками с точностью до одной десятимиллионной своей величины. Можно ли думать, что оптики, соединившие свои усилия с цитологами, не овладеют той сотой длины волны, которая стоит в поставленной ими задаче? Найдутся десятки способов обойти предел, поставленный длиной волны.

Вам известен один из таких обходов, так называемый метод ультрамикроскопии. Если невидимые в микроскоп микробы расставлены далеко друг от друга, то можно осветить их сбоку ярким светом. Как бы они малы ни были, они заблестят, как звезда на темном фоне. Форму их нельзя определить, можно лишь констатировать их присутствие, но и это часто чрезвычайно важно. Этим методом широко пользуется бактериология.

Труды английского оптика Дж. Сиркса (1893) положили начало интерференционной микроскопии. В 1903 г. Р. Жигмонди (R. Zsigmondy) и Зидентопф (Н. Siedentopf) создали ультрамикроскоп, в 1911 г. Саньяком (М. Sagnac) был описан первый двухлучевой интерференционный микроскоп, в 1935 г. Зернике (F. Zernicke) предложил использовать метод фазового контраста для наблюдения в микроскопах прозрачных, слабо рассеивающих свет объектов. В середине XX в. был изобретен электронный микроскоп, в 1953 г. финским физиологом Вильской (A. Wilska) был изобретен аноптральный микроскоп.

Большой вклад в разработку проблем теоретической и прикладной оптики, усовершенствование оптических систем микроскопа и микроскопической техники внесли М.В. Ломоносов, И.П. Кулибин, Л.И. Мандельштам, Д.С. Рождественский, А.А. Лебедев, С.И. Вавилов, В.П. Линник, Д.Д. Максутов и др.