Главная · Сон · Генетические мутации привлекательных людей. Некоторые человеческие мутации

Генетические мутации привлекательных людей. Некоторые человеческие мутации

Издавна сложилось так, что людей, имеющих генетические мутации, считали монстрами и чудовищами. Ими пугали детей и старались всячески избегать. Сейчас мы знаем, что непривычный для нас внешний вид некоторых людей - это результат редких генетических заболеваний. К сожалению, ученые так и не научились с ними бороться.

Прогерия (синдром Хатчинсона-Гилфорда)
Встречается у одного ребенка из 8 миллионов. Для этого заболевания характерны необратимые изменения кожи и внутренних органов, вызванные преждевременным старением организма.


Упоминание о синдроме Хатчинсона-Гилфорда встречается в фильме «Загадочная история Бенджамина Баттона» (2008). В нем рассказывается о человеке, который родился старым. Однако, в отличие от реальных больных прогерией, главный герой кинокартины с возрастом молодел.

Синдром Юнера Тана (СЮТ)
Люди с этим редким генетическим дефектом склонны к хождению на четвереньках, имеют примитивную речь и слабую мозговую деятельность. Совокупность всех вышеперечисленных признаков была названа в честь ее первооткрывателя - биолога Юнера Тана.

Гипертрихоз
Заболевание проявляется в избыточном росте волос, не свойственном данному участку кожи, или не соответствующем полу и/или возрасту. Преимущественно встречается у женщин.

Эпидермодисплазия верруциформная
Редкое кожное заболевание делает своих обладателей очень чувствительными к широко распространенному вирусу папилломы человека (ВПЧ). У таких людей инфекция вызывает рост многочисленных кожных наростов, напоминающих по плотности древесину.

Тяжелый комбинированный иммунодефицит
У носителей данного заболевания (1 ребенок из 100 тысяч новорожденных) бездействует иммунная система. Наиболее распространенным методом лечения этой мутации является трансплантация гемопоэтических стволовых клеток - клеток, из которых затем формируются все прочие клетки крови.

Синдром Леша-Нихена
Наследственное заболевание, характеризующееся увеличением синтеза мочевой кислоты, которое ведет к появлению камней в почках и мочевом пузыре, а также к подагрическому артриту.

Эктродактилия
Врожденный порок развития, характеризующийся отсутствием или недоразвитием одного или нескольких пальцев кистей и/или стоп, вызван сбоем в работе седьмой хромосомы.

Синдром Протея
Синдром вызывает быстрый и непропорциональный рост костей и кожных покровов, вызванный мутацией в гене AKT1. Именно этот ген отвечает за правильный рост клеток. Из-за сбоя в его работе одни клетки стремительно быстро растут и делятся, а другие продолжают расти в нормальном темпе. В настоящее время известно около 120 носителей заболевания в мире.

Триметиламинурия (синдром рыбного запаха)
Заболевание, при котором от тела пациента исходит неприятный запах, напоминающий запах гниющей рыбы и яиц, обусловлено накоплением триметиламина в организме больного. Это вещество, выделяясь с потом, мочой и выдыхаемым воздухом, и создает неприятный запах.

Синдром Марфана
Встречается у одного из 5 тысяч людей. При этом часто распространенном заболевании, вызванном мутацией генов, нарушено развитие соединительной ткани.

Болезнь Хантера (Мукополисахаридоз II типа)
Заболевание соединительной ткани связано с наследственными аномалиями обмена веществ, возникает в результате дефицита ряда ферментов и приводит к различным дефектам костной, хрящевой, соединительной тканей.

Из-за огрубения лицевых черт люди с синдромом Хантера очень похожи между собой до такой степени, что, когда они вместе, их можно принять за близнецов. Также стоит отметить, что отклонения в интеллектуальном развитии имеют место быть лишь в тяжелой форме синдрома - больные с умеренной формой синдрома имеют нормальный интеллект.

Рудиментарные структуры и компромиссные конструкции все еще могут быть обнаружены в организме человека, которые являются вполне определенными свидетельствами того, что у нашего биологического вида длинная эволюционная история, и что он не просто так появился из ничего.

Также еще одной серией свидетельств этого являются продолжающиеся мутации в человеческом генофонде. Большинство случайных генетических изменений нейтральные, некоторые вредные, а некоторые, оказывается, вызывают положительные улучшения. Такие полезные мутации являются сырьем, которое может быть со временем использовано естественным отбором и распределено среди человечества.

В этой статье некоторые примеры полезных мутаций...

Аполипопротеин AI-Milano

Болезнь сердца является одним из бичей промышленно развитых стран. Она досталась нам в наследство из эволюционного прошлого, когда мы были запрограммированы на стремление к получению богатых энергией жиров, в то время бывших редким и ценным источником калорий, а теперь являющихся причиной закупорки артерий. Однако существуют доказательства того, что у эволюции имеется потенциал, который стоит изучать.

У всех людей есть ген белка под названием аполипопротеин AI, являющийся частью системы, транспортирующей холестерин по кровотоку. Apo-AI является одним из липопротеинов высокой плотности (ЛВП), о которых уже известно, что они являются полезными, поскольку удаляют холестерин со стенок артерий. Известно, что среди небольшого сообщества людей в Италии присутствует мутировавшая версия этого белка, которая называется аполипопротеин AI-Milano, или, сокращенно, Apo-AIM. Apo-AIM действует еще более эффективно, чем Apo-AI во время удаления холестерина из клеток и рассасывания артериальных бляшек, а также дополнительно действуя как антиокислитель, предотвращающий некоторый вред от воспаления, которое обычно возникает при артеросклерозе. По сравнению с другими людьми у людей с геном Apo-AIM значительно ниже степень риска развития инфаркта миокарда и инсульта, и в настоящее время фармацевтические компании планируют выводить на рынок искусственную версию белка в виде кардиозащитного препарата.

Также производятся другие лекарственные препараты, основанные на еще одной мутации в гене PCSK9, производящей подобный эффект. У людей с этой мутацией на 88% снижен риск развития болезни сердца.

Увеличенная плотность костей

Один из генов, который отвечает за плотность кости у людей, называется ЛПНП-подобный рецептор малой плотности 5, или, сокращенно, LRP5. Мутации, ослабляющие функцию LRP5, как известно, вызывают остеопороз. Но другой вид мутации может усилить его функцию, вызывая одну из самых необычных известных мутаций у человека.

Эта мутация была обнаружена случайно, когда молодой человек со своей семьей со Среднего Запада попали в серьезную автокатастрофу, и с места ее происшествия они ушли сами без единой сломанной кости. Рентген выявил, что у них, так же как и у других членов этой семьи, кости были значительно крепче и плотнее, чем это обычно бывает. Занимающийся этим случаем врач, сообщил, что "ни один из этих людей, у которых возраст колебался от 3 до 93 лет, никогда не ломал кости". Фактически оказалось, что они являются не только невосприимчивыми к травмам, но и к обычной возрастной дегенерации скелета. У некоторых из них имелся доброкачественный костистый нарост на небе, но кроме этого у болезни не было других побочных эффектов – кроме того, как сухо было отмечено в статье, что это затрудняло плавание. Как и в случае с Apo-AIM некоторые фармацевтические фирмы исследуют возможность использования этого в качестве исходной точки для терапии, которая могла бы помочь людям с остеопорозом и другими болезнями скелета.

Устойчивость к малярии

Классическим примером эволюционного изменения у людей является мутация гемоглобина под названием HbS, заставляющая эритроциты принимать изогнутую, серповидную форму. Наличие одной копии дарит устойчивость к малярии, наличие же двух копий вызывает развитие серповидноклеточной анемии. Но мы сейчас говорим не об этой мутации.

Как стало известно в 2001 году, итальянские исследователи, изучающие население африканской страны Буркина-Фасо, открыли защитный эффект, связанный с другим вариантом гемоглобина, названного HbC. Люди со всего одной копией этого гена на 29% меньше рискуют заразиться малярией, в то время как люди с двумя его копиями могут наслаждаться 93%-ым сокращением риска. К тому же этот вариант гена вызывает, в худшем случае, легкую анемию, а отнюдь не изнурительную серповидноклеточную болезнь.

Тетрохроматическое зрение

У большинства млекопитающих хроматическое зрение несовершенно, поскольку у них имеется только два вида колбочки сетчатки, ретинальных клеток, различающих различные оттенки цвета. У людей, как и у других приматов, имеются три таких вида, наследство прошлого, когда хорошее хроматическое зрение использовалось для поиска спелых, ярко окрашенных фруктов и давало преимущество для выживания вида.

Ген для одного вида колбочки сетчатки, в основном отвечающий за синий оттенок, был найден в хромосоме Y. Оба других вида, чувствительные к красному и зеленому цвету, находятся в X-хромосоме. В силу того, что у мужчин имеется только одна X-хромосома, мутация, повреждающая ген, отвечающий за красный или зеленый оттенок, приведет к красно-зеленой цветовой слепоте, в то время как у женщин сохранится резервная копия. Это объясняет факт, почему это заболевание почти исключительно присуще мужчинам.

Но возникает вопрос: что происходит, если мутация гена, отвечающего за красный или зеленый цвет, не повредит его, а переместит цветовую гамму, за которую он отвечает? Гены, отвечающие за красный и зеленый цвета, именно так и появились, как следствие дупликации и дивергенции одиночного наследственного гена колбочки сетчатки.

Для мужчины это не было бы существенной разницей. У него все так же имелись бы три цветных рецептора, только набор отличался бы от нашего. Но если бы это произошло с одним из генов колбочки сетчатки женщины, тогда гены, отвечающие за синий, красный и зеленый цвета, находились бы в одной X-хромосоме, а видоизмененный четвертый – в другой..., что означает, что у нее было бы четыре различных цветных рецептора. Она являлась бы, как птицы и черепахи, настоящим "тетрахроматом", теоретически способным различать оттенки цвета, которые все остальные люди не могут видеть отдельно. Означает ли это, что она могла бы видеть совершенно новые цвета, невидимые для всех остальных? Это открытый вопрос.

Также у нас имеются доказательства того, что в редких случаях это уже происходило. Во время исследования по различению цветов, по крайней мере, одна женщина точно показала результаты, которые можно было ожидать от настоящего тетрахромата.

Мы уже обсуждали с вами Кончетту Антико – художницу из Сан-Диего, она тетрахромат.

Меньшая потребность во сне

Восьмичасовой сон нужен не всем: ученые из Пенсильванского университета обнаружили мутацию малоизученного гена BHLHE41, которая, по их мнению, позволяет человеку полноценно отдыхать за более короткое время сна. В ходе исследования ученые попросили пару неидентичных близнецов, один из которых имел вышеупомянутую мутацию, воздерживаться от сна на протяжении 38 часов. «Близнец-мутант» и в повседневной жизни спал всего пять часов - на час меньше, чем его брат. А после депривации он совершил на 40% меньше ошибок в тестах и ему потребовалось меньше времени на то, чтобы полностью восстановить когнитивные функции.

По мнению ученых, благодаря такой мутации человек проводит больше времени в состоянии «глубокого» сна, необходимого для полноценного восстановления физических и умственных сил. Конечно, эта теория требует более основательного изучения и дальнейших экспериментов. Но пока что она выглядит очень заманчиво - кто не мечтает, чтобы в сутках было больше часов?

Гиперэлластичная кожа

Синдром Элерса - Данлоса - генетическое заболевание соединительных тканей, поражающее суставы и кожу. Несмотря на ряд серьёзных осложнений, люди с этим недугом способны безболезненно сгибать конечности под любыми углами. Образ Джокера в фильме Кристофера Нолана «Тёмный рыцарь» частично основан на этом синдроме.

Эхолокация


Одна из способностей, которой любой человек владеет ей в той или иной степени. Слепые люди учатся пользоваться ей в совершенстве, и на этом во многом основан супергерой Сорвиголова. Свой навык можно проверить, встав с закрытыми глазами в центре комнаты и громко щёлкая языком в разных направлениях. Если вы мастер эхолокации, то сможете определить расстояние до любого объекта.

Вечная молодость


Звучит гораздо лучше, чем является на самом деле. Таинственная болезнь, которую окрестили «Синдром X» предотвращает у человека любые признаки взросления. Известный пример - Брук Меган Гринберг, дожившая до 20 лет и при этом телесно и умственно оставшаяся на уровне двухлетнего ребёнка. Известны лишь три случая этого заболевания.

Нечувствительность к боли

Данную способность демонстрировал супергерой Пипец, - это реальное заболевание, не позволяющее организму ощущать боль, жар или холод. Способность вполне героическая, но благодаря ей человек может легко навредить себе, не осознавая этого и вынужден жить очень осторожно.

Суперсила

Одна из самых популярных способностей у супергероев, но одна из самых редких в реальном мире. Мутации, связанные с недостатком белка миостатина, приводят к значительному увеличению мышечной массы человека с отсутствием роста жировой ткани. Известно всего два случая подобных дефектов среди всех людей, и в одном из них двухлетний ребёнок обладает телом и силой бодибилдера.

Золотая кровь

Кровь с нулевым резус-фактором, наиредчайшая в мире. За последние полвека было найдено лишь сорок человек с этим типом крови, на данный момент в живых существует лишь девять. Резус-ноль подходит абсолютно всем, так как в нём отсутствуют любые антигены в системе Rh, но самих его носителей может спасти только такой же «брат по золотой крови».

Так как ученые уже достаточно долго занимаются подобными вопросами, стало известно, что можно получить нулевую группу. Это делается за счет специальных кофейных бобов, которые способны удалять агглютиноген В эритроцитов. Такая система работала сравнительно не долго, так как были случаи несовместимости таковой схемы. После этого стала известна еще одна система, которая была основана на работе двух бактерий – фермент одной из них убивал агглютиноген А, а другой В. Поэтому ученые сделали вывод, что второй метод образования нулевой группы наиболее эффективен и безопасен. Поэтому, американская компания до сих пор усердно работает над разработкой специального аппарата, который будет эффективно и качественно преобразовывать кровь с одной группы крови в нулевую. А такая нулевая кровь будет подходить идеально для всех остальных переливаний. Таким образом, вопрос донорства будет не так глобален, как сейчас и всем реципиентам не придется столько долго ждать, чтоб получить свою кровь.

Ученые не одно столетие уже давно ломают голову о том, как сделать одну единственную универсальную группу, у людей с которой будет минимум риска для различных заболеваний и недостатков. Поэтому на сегодняшний день стало возможным «обнулить» любую группу крови. Это позволит в ближайшем будущем значительно уменьшить риск различных осложнений и заболеваний. Таким образом, исследования показали, что и у мужчин и у женщин наименьший риск развития ИБС. Подобные наблюдения проводили больше 20-и лет. Эти люди на протяжении определенного периода времени отвечали на определенные вопросы о своем здоровье и образе жизни.

Все существующие данные опубликовали на различных источниках. Все исследования привели к тому, что люди с нулевой группой действительно меньше болеют и имеют самую малую вероятность заболевания ИБС. Так же стоит отметить, что резус-фактор не имеет никакого определенного воздействия. Поэтому нулевая группа крови не имеет никакого резус-фактора, что может разделять ту ли иную группу. Одной из наиболее важных причин оказалось то, что у каждой крови ко всему этому еще и разная свертываемость. Это еще больше усложняет ситуацию и вводит в заблуждение ученых. Если смешивать нулевую группу с какой-либо другой и не учитывать уровень свертываемости, это может привести развитию у человека атеросклероза и смерти. На данный момент технология превращения одной группы крови в нулевую не настолько распространена, что каждая больница может этим пользоваться. Поэтому во внимание берутся исключительно те распространенные медицинские центры, которые работают на высоком уровне. Нулевая группа является новым достижением и открытием медицинских ученых, что на сегодняшний день не всем даже знакома.

Как возникают вредоносные гены?

Хотя основное свойство генов заключается в точном самокопировании, благодаря чему и происходит наследственная передача множества признаков от родителей к детям, свойство это не является абсолютным. Природа генетического материала двойственна. Гены обладают еще и способностью изменяться, приобретать новые свойства. Такие изменения генов называются мутациями. И именно мутации генов создают изменчивость, необходимую для эволюции живой материи, многообразия форм жизни. Мутации возникают в любых клетках организма, но передаваться потомству могут только гены половых клеток.

Причины мутаций заключаются в том, что многие факторы внешней среды, с которыми на протяжении жизни взаимодействует каждый организм, могут нарушать строгую упорядоченность процесса самовоспроизведения генов, хромосом в целом, приводить к ошибкам в наследовании. В экспериментах установлены следующие факторы, вызывающие мутации: ионизирующее излучение, химические вещества и высокая температура. Очевидно, что все эти факторы имеются и в естественной среде обитания человека (например, естественный фон радиации, космического излучения). Мутации существовали всегда как вполне обычное природное явление.

Будучи в своей сути ошибками в передаче генетического материала, мутации носят случайный и ненаправленный характер, то есть могут быть как полезными, так и вредными и относительно нейтральными для организма.

Полезные мутации закрепляются в ходе эволюции и составляют основу прогрессивного развития жизни на Земле, а вредные - снижающие жизнеспособность, являются как бы обратной стороной медали. Они и лежат в основе наследственных болезней во всем их многообразии.

Мутации бывают двух типов:

  • генные (на молекулярном уровне)
  • и хромосомные (меняющие число или структуру хромосом на клеточном уровне)

Как те, так и другие могут вызываться одними и теми же факторами.

Как часто возникают мутации?
Часто ли появление больного ребенка связано с новой мутацией?

Если бы мутации возникали слишком часто, то изменчивость в живой природе преобладала бы над наследственностью и никаких устойчивых форм жизни не существовало бы. С очевидностью логика подсказывает, что мутации являются редкими событиями, во всяком случае намного более редкими, чем возможность сохранения свойств генов при передаче от родителей к детям.

Реальная частота мутаций для отдельных генов человека составляет в среднем от 1:105 до 1:108. Это значит, что примерно одна из миллиона половых клеток в каждом поколении несет новую мутацию. Или, другими словами, хотя это и упрощение, можно сказать, что на миллион случаев нормальной передачи гена приходится один случай мутации. Важно то обстоятельство, что, однажды возникнув, та или иная новая мутация может затем передаваться в последующие поколения, то есть закрепляться механизмом наследования, поскольку обратные мутации, возвращающие ген в исходное состояние, столь же редки.

В популяциях соотношение в численности мутантов и унаследовавших вредоносный ген от родителей (сегрегантов) среди всех больных зависит как от типа наследования, так и от их способности оставлять потомство. При классических рецессивных заболеваниях вредная мутация может незаметно передаваться через множество поколений здоровых носителей до тех пор, пока в брак не вступят два носителя одного и того же вредного гена, и тогда практически каждый такой случай рождения больного ребенка связан с наследованием, а не с новой мутацией.

При доминантных же заболеваниях доля мутантов находится в обратной зависимости от детородной способности больных. Очевидно, что когда заболевание приводит к ранней смерти или неспособности больных иметь детей, то наследование заболевания от родителей невозможно. Если же заболевание не сказывается на продолжительности жизни или способности иметь детей, то, наоборот, будут преобладать унаследованные случаи, а новые мутации будут редки по сравнению с ними.

Например, при одной из форм карликовости (доминантной ахондроплазии) по социальным и биологическим причинам размножение карликов значительно ниже среднего, в этой группе населения примерно в 5 раз меньше детей по сравнению с другими. Если принять средний коэффициент размножения в норме за 1, то для карликов он будет равен 0,2. Это означает, что 80 % больных в каждом поколении - результат новой мутации, и только 20 % больных наследуют карликовость от родителей.

При наследственных заболеваниях, генетически сцепленных с полом, доля мутантов среди больных мальчиков и мужчин также зависит от относительной плодовитости больных, но здесь всегда будут преобладать случаи наследования от матерей, даже при тех болезнях, когда больные вообще не оставляют потомства. Максимальная доля новых мутаций при таких летальных заболеваниях не превышает 1/3 части случаев, поскольку на долю мужчин приходится именно одна треть Х-хромосом всего населения, а две трети их приходится на женщин, которые, как правило, бывают здоровыми.

Может ли у меня родиться ребенок с мутацией, если я получил повышенную дозу облучения?

Отрицательные последствия загрязнения окружающей среды как химического, так и радиоактивного - проблема века. Генетики сталкиваются с ней не так редко, как хотелось бы в широком спектре вопросов: от профессиональных вредностей до ухудшения экологической ситуации в результате аварий на атомных электростанциях. И понятна обеспокоенность, например людей, переживших чернобыльскую трагедию.

Генетические последствия загрязнения окружающей среды действительно связаны с увеличением частоты мутаций, в том числе и вредных, приводящих к наследственным болезням. Однако эти последствия, к счастью, не столь катастрофичны, чтобы говорить об опасности генетического вырождения человечества, по крайней мере на современном этапе. Кроме того, если рассматривать проблему относительно конкретных лиц и семей, то можно с уверенностью сказать, что риск рождения больного ребенка из-за облучения или иного вредного воздействия именно в результате мутации никогда не бывает высоким.

Частота мутаций хотя и повышается, но не настолько, чтобы превысить десятую, а то и сотую долю процента. Во всяком случае для любого человека, даже подвергшегося явному воздействию мутагенных факторов, риск отрицательных последствий для потомства намного меньше, чем свойственный всем людям генетический риск, связанный с носительством патологических генов, унаследованных от предков.

Кроме того, далеко не все мутации приводят к немедленному проявлению в виде заболевания. Во многих случаях, даже если ребенок получит новую мутацию от одного из родителей, он родится совершенно здоровым. Ведь значительная часть мутаций является рецессивными, то есть не проявляет своего вредного действия у носителей. А таких случаев, чтобы при исходно нормальных генах обоих родителей ребенок получил одну и ту же новую мутацию одновременно от отца и матери, практически не бывает. Вероятность подобного случая так ничтожно мала, что для ее реализации недостаточно всего населения Земли.

Из этого также следует, что повторное возникновение мутации в одной и той же семье практически нереально. Поэтому, если у здоровых родителей появился больной ребенок с доминантной мутацией, то их остальные дети, то есть братья и сестры больного, должны быть здоровыми. Однако для потомства больного ребенка риск унаследования заболевания составит 50 % в соответствии с классическими правилами.

Бывают ли отклонения от обычных правил наследования и с чем они связаны?

Да, бывают. Как исключение - иногда лишь в силу своей редкости, как, например, появление больных гемофилией женщин. Встречаются и чаще, но в любом случае отклонения обусловлены сложными и многочисленными взаимосвязями генов в организме и их взаимодействием с окружающей средой. По сути дела, исключения отражают все те же фундаментальные законы генетики, но на более сложном уровне.

Например, для многих доминантно наследуемых заболеваний характерна сильная изменчивость их выраженности, вплоть до того, что иногда симптомы заболевания у носителя патологического гена могут вообще отсутствовать. Это явление называется неполной пенетрантностью гена. Поэтому в родословных семей с доминантными заболеваниями иногда встречаются так называемые проскакивающие поколения, когда заведомые носители гена, имеющие как больных предков, так и больных потомков, практически здоровы.

В некоторых случаях при более тщательном обследовании таких носителей обнаруживаются хотя и минимальные, стертые, но вполне определенные проявления. Но бывает и так, что имеющимися в нашем распоряжении методами никаких проявлений патологического гена обнаружить не удается, несмотря на явные генетические доказательства того, что он есть у конкретного человека.

Причины этого явления изучены пока недостаточно. Считается, что вредный эффект мутантного гена может быть модифицирован и компенсирован другими генами или внешнесредовыми факторами, но конкретные механизмы такой модификации и компенсации при тех или иных заболеваниях неясны.

Бывает и так, что в некоторых семьях, в нескольких поколениях подряд передаются рецессивные заболевания так, что их можно спутать с доминантными. Если больные вступают в брак с носителями гена того же заболевания, то половина их детей также наследует "двойную дозу" гена - условие, необходимое для проявления заболевания. То же самое может произойти и в следующих поколениях, хотя такая "казуистика" встречается только при многократных кровнородственных браках.

Наконец, не носит абсолютного характера и деление признаков на доминантные и рецессивные. Иногда это деление просто условно. Один и тот же ген можно в одних случаях считать доминантным, а в других - рецессивным.

Применяя тонкие методы исследования, нередко можно распознать действие рецессивного гена в гетерозиготном состоянии, даже у совершенно здоровых носителей. Например, ген серповидноклеточного гемоглобина в гетерозиготном состоянии обусловливает серповидную форму эритроцитов, что не сказывается на здоровье человека, а в гомозиготном приводит к тяжелому заболеванию - серповидно-клеточной анемии.

В чем отличие генных и хромосомных мутаций.
Что такое хромосомные болезни?

Хромосомы являются носителями генетической информации на более сложном - клеточном уровне организации. Наследственные болезни могут быть вызваны и хромосомными дефектами, возникшими при образовании половых клеток.

Каждая хромосома содержит свой набор генов, располагающихся в строгой линейной последовательности, то есть те или иные гены располагаются не только в одних и тех же у всех людей хромосомах, но и в одних и тех же участках этих хромосом.

Нормальные клетки организма содержат строго определенное число парных хромосом (отсюда и парность находящихся в них генов). У человека в каждой клетке, кроме половых, 23 пары (46) хромосом. Половые клетки (яйцеклетки и сперматозоиды) содержат 23 непарные хромосомы - одинарный набор хромосом и генов, так как парные хромосомы расходятся в процессе клеточного деления. При оплодотворении, когда сперматозоид и яйцеклетка сливаются, из одной клетки (теперь уже с полным двойным набором хромосом и генов) развивается плод - эмбрион.

Но образование половых клеток происходит иногда с хромосомными "ошибками". Это мутации, приводящие к изменению числа или структуры хромосом в клетке. Вот почему оплодотворенная яйцеклетка может содержать избыток или недостаток хромосомного материала по сравнению с нормой. Очевидно, что такой хромосомный дисбаланс приводит к грубым нарушениям развития плода. Проявляется это в виде самопроизвольных выкидышей и мертворождений, наследственных болезней, синдромов, получивших название хромосомных.

Наиболее известным примером хромосомной болезни является болезнь Дауна (трисомия - появление лишней 21-й хромосомы). Симптомы этого заболевания легко выявляются по внешнему виду ребенка. Это и кожная складка во внутренних углах глаз, которая придает лицу монголоидный вид, и большой язык, короткие и толстые пальцы, при тщательном обследовании у таких детей обнаруживаются и пороки сердца, зрения и слуха, умственная отсталость.

К счастью, вероятность повторения в семье этой болезни и многих других хромосомных аномалий мала: в подавляющем большинстве случаев они обусловлены случайными мутациями. Кроме того, известно, что хромосомные мутации случайного характера чаще происходят в конце детородного периода.

Так, с увеличением возраста матерей увеличивается и вероятность хромосомной ошибки во время созревания яйцеклетки, и следовательно, такие женщины имеют повышенный риск рождения ребенка с хромосомными нарушениями. Если общая частота появления синдрома Дауна среди всех новорожденных детей составляет примерно 1:650, то для потомства молодых матерей (25 лет и моложе) она существенно ниже (менее 1:1000). Индивидуальный риск достигает среднего уровня к 30-летнему возрасту, выше он к 38 годам - 0,5 % (1:200), а к 39 годам - 1 % (1:100), в возрасте же свыше 40 лет возрастает до 2-3 %.

А могут ли быть здоровыми люди, имеющие хромосомные аномалии?

Да, могут при некоторых типах хромосомных мутаций, когда изменяется не число, а структура хромосом. Дело в том, что структурные перестройки в первоначальный момент своего появления могут оказаться сбалансированными - не сопровождаться избытком или недостатком хромосомного материала.

Например, могут обменяться своими участками, несущими разные гены, две непарные хромосомы, если при разрывах хромосом, иногда наблюдающихся в процессе клеточного деления, их концы становятся как бы липкими и склеиваются со свободными фрагментами других хромосом. В результате таких обменов (транслокаций) число хромосом в клетке сохраняется, но так возникают новые хромосомы, в которых нарушен принцип строгой парности генов.

Другая разновидность транслокаций - склеивание двух практически целых хромосом своими "липкими" концами, в результате чего общее число хромосом уменьшается на одну, хотя потери хромосомного материала не происходит. Человек - носитель такой транслокации, совершенно здоров, однако имеющиеся у него сбалансированные структурные перестройки уже не случайно, а вполне закономерно приводят к хромосомному дисбалансу в его потомстве, поскольку существенная часть половых клеток носителей таких транслокаций имеет лишний или, наоборот, недостаточный хромосомный материал.

Иногда такие носители вообще не могут иметь здоровых детей (правда, подобные ситуации исключительно редки). Например, у носителей подобной хромосомной аномалии - транслокации между двумя одинаковыми хромосомами (скажем, слияние концов той же 21-й пары), 50 % яйцеклеток или сперматозоидов (в зависимости от пола носителя) содержат 23 хромосомы, включая сдвоенную, а остальные 50 % содержат на одну хромосому меньше, чем полагается. При оплодотворении же клетки со сдвоенной хромосомой получат еще одну, 21-ю хромосому, и в результате будут рождаться дети с болезнью Дауна. Клетки же с недостающей 21-й хромосомой при оплодотворении дают нежизнеспособный плод, который спонтанно абортируется в первой половине беременности.

Носители транслокаций других типов могут иметь и здоровое потомство. Однако существует риск хромосомного дисбаланса, приводящего к грубой патологии развития в потомстве. Этот риск для потомства носителей структурных перестроек существенно выше, чем риск появления хромосомных аномалий в результате случайных новых мутаций.

Кроме транслокаций, существуют и другие типы структурных перестроек хромосом, приводящих к сходным негативным последствиям. К счастью, наследование хромосомных аномалий с высоким риском патологии встречается в жизни намного реже, чем случайные хромосомные мутации. Соотношение случаев хромосомных болезней среди их мутантных и наследственных форм, примерно 95 % и 5 % соответственно.

Сколько уже известно наследственных болезней?
Увеличивается или уменьшается их число в истории человечества?

Исходя из общебиологических представлений, можно было бы ожидать примерного соответствия между числом хромосом в организме и числом хромосомных болезней (и точно так же между числом генов и генных болезней). И действительно, в настоящее время известно несколько десятков хромосомных аномалий со специфическими клиническими симптомами (что фактически превышает число хромосом, потому что разные количественные и структурные изменения одной и той же хромосомы обусловливают разные болезни).

Намного больше и превышает 2000 число известных болезней, вызванных мутациями единичных генов (на молекулярном уровне). Подсчитано, что число генов во всех хромосомах человека намного больше. Многие из них не являются уникальными, так как представлены в виде многократно повторяющихся копий в разных хромосомах. Кроме того, многие мутации могут проявляться не в виде заболеваний, а приводить к эмбриональной гибели плода. Так что и число генных болезней примерно соответствует генетической структуре организма.

По мере развития медико-генетических исследований во всем мире число известных наследственных болезней постепенно увеличивается, а многие из них, ставшие классическими, были известны людям очень давно. Сейчас в генетической литературе наблюдается своеобразный бум публикаций о предположительно новых случаях и формах наследственных болезней и синдромов, многие из которых принято называть по именам первооткрывателей.

Каждые несколько лет известнейший американский генетик Виктор Мак-Кьюсик издает каталоги наследственных признаков и болезней человека, составляемые на основании компьютерного анализа данных мировой литературы. И всякий раз каждое последующее издание отличается от предыдущего увеличивающимся числом таких болезней. Очевидно, что тенденция эта будет сохраняться и далее, но скорее она отражает улучшение распознавания наследственных болезней и более пристальное внимание к ним, чем реальное увеличение их числа в процессе эволюции.

В мире очень много явлений, которые достаточно сложно объяснить. Почему и как происходят такие вещи? До конца не ясно, но ученые исследуют эту область. Представляем вашему вниманию 10 генетических мутаций, встречающихся у людей.

Вконтакте

Однокласники

​​​​



Чаще всего дети, которые больны прогерией, не доживают до 13 летнего возраста, конечно, бывают исключения и ребенок отмечает свое двадцатилетие, но такие случаи единичные. Чаще всего дети, имеющие этот вид мутации, умирают от сердечных приступов или инсультов. Причем на 8 миллионов детей рождается один ребенок больной прогерией. Вызывает заболевание мутация человека его ген ламин А/С, в белке который обеспечивает поддержку клеточным ядрам.

Прогерия включает в себя и сопутствующие симптомы: жесткая кожа без волос, медленный рост, аномалии в развитии костей, характерная форма носа. К этой мутации не ослабевает интерес у геронтологов, они и сегодня пытаются разобраться во взаимосвязи наличия бракованного гена и процессов, приводящих к старению организма.

​​​​​


СЮТ или Синдром Юнера Тана основным симптомом этой мутации человека является хождение на 4 конечностях. Открыта эта мутация была биологом Юнером Таном во время изучения жителей Турции, сельской семьи Улас, состоящей из 5 человек. Человек, имеющий эту аномалию, не умеет связно разговаривать, что обусловлено врожденной мозговой недостаточностью. Ученный-биолог из Турции исследовал этот вид мутации человека и описал ее следующими словами « Основа генетической мутации - это возврат развития человека к обратной ступени эволюции человека.

Мутация вызвана генетической аномалией, то есть отклонение в гене способствовало рецидиву хождения на руках и ногах одновременно (квадропедализм), от передвижения прямостоящим образом на двух ногах (бипедализм). В своих исследованиях Тан выявил мутацию прерывистого равновесия. Кроме того это отклонение, как считает биолог, можно использовать как живую модель эволюционных изменений, которые претерпел человек как вид от своего появления до настоящего времени. Некоторые не принимают этой теории, по их мнению появление людей с Синдромом Юнера Тана развивается не зависимо от генома.

​​​​​​


Синдром Абрамса или гипертрихоз поражает 1 на миллиард человек планеты. Ученым известно всего пятьдесят зафиксированных случаев проявления этой мутации со времен Средневековья. Человек, имеющий мутированный ген обладает повышенным большим количеством волос на теле. Вызвана эта мутация нарушением важной связи между эпидермисом и дермой еще во внутриутробном развитии волосяной луковицы. Во время этой мутации у трехмесячного плода сигналы, поступающие от дермы, как бы оповещают фолликулу его будущую форму.

А фолликул в свою очередь сигнализирует коже, что фолликул сформирован. В результате волоски растут равномерно, то есть, расположены на одинаковом расстоянии. При мутации одного из генов отвечающего за эту тонкую связь во время формирования волосяного покрова, волосяная луковица не может сообщить дерме о количестве уже сформировавшихся луковиц, поэтому луковицы как бы насаживаются одна на другую, образуя плотную «шерсть» на коже человека.


Достаточно редкий вид мутации, который не позволяет приобрести имуннитет устойчивый к вирусу папилломы человека, носит название эпидермодисплазия верруциформная. Эта мутация не мешает появлению на коже ног, рук и лице папул или чешуйчатых пятен. «Нарост» со стороны имеет вид бородавок, но иногда они напоминают древесную кору или роговое вещество. По сути, эти образования являются опухолью, чаще всего появляются у людей имеющих это генное отклонение поле 20 лет, на участках кожи, на которую попадают открытые солнечные лучи.

Метода способного полностью устранить этот недуг не изобрели, но используя современные хирургические методы можно слегка уменьшить его проявление и немного притормозить разрастание опухолевых наростов. Информация об Эпидермодисплазии верруциформной стала доступна в 2007 году, с появлением в интернете документального фильма в главной роли выступил индонезиец Деде Косвара. В 2008 году, ему на тот момент исполнилось 35 лет, он перенес сложную операцию, на которой ему удалили 6 кг наростов с разных участков тела, таких как руки, голова, туловище и ноги.

На участки, откуда были удалены наросты, врачи пересадили новую кожу. Благодаря этой операции Косваро избавился в общей сложности 95 % бородавок. Но спустя время бородавки снова начали появляться, в связи, с чем врачи рекомендовали проводить операцию каждые два года. Ведь в случае Косваро это жизненно необходимо, после удаления наростов он может самостоятельно есть, держать ложку и одеваться.


Мутация человеческого гена привела к ситуации, когда люди стали рождаться, совершенно не обладая иммунной системой способной справиться с вирусами. О тяжелом комбинированном иммунодефиците стало известно широкой публике благодаря кинофильму «Мальчик в пластиковом пузыре». Основан фильм на истории о тяжелой жизни двух мальчишек, имеющих с рождения инвалидность Теда ДеВиты и Дэвида Веттера. Герой фильма маленький мальчик, который был вынужден существовать в специальной кабине, изолирующей его от открытого пространства, ведь воздействие микробов содержащихся в нефильтрованном воздухе могли стать для мальчишки смертельными.

Прототип киногероя Виттер дожил до тринадцатилетнего возраста, смерть наступила после неудавшейся попытки пересадить ему костный мозг. Эта иммунная аномалия является следствием изменений в нескольких генах. Эти изменения влияют негативно на выработку лимфы. Ученые считают, что мутация возникает вследствие нехватки аденозиндезаминазы. Врачам стали доступны некоторые методы позволяющие лечить ТКИ, для этого подходит генная терапия.


Данная мутация поражает одного новорожденного мальчика из 380 тысяч. При этой мутации увеличивается выработка мочевой кислоты, которыя появляется вследствие протекающих у ребенка естественных обменных процессов. Мужчины, пораженные СЛН, имеют сопутствующие заболевания, такие как подагра и камни в почках. Это происходит из-за того, что большое количество мочевой кислоты поступает в кровь.

Данная мутация отвечает за изменения в поведении, а так же в неврологических функциях мужчины. Нередко у больных бывают резкие спазмы мышц конечностей, которые могут проявлятся судорогами или беспорядочным размахиванием конечностями. Во время таких приступов больные нередко травмируют сами себя. Как известно, подагру врачи научились лечить.

​​​​​


Данная мутация видна со стороны, у человека полностью нет фаланг пальцев, в некоторых случаях они недоразвиты. Руки и ноги у больного некоторым людям напоминают клешню. Данный вид мутации встретить практически не реально. Иногда рождаются дети, имеющие все пальчики, но они срослись. В настоящее время врачи разделяют их, проведя несложную пластическую операцию. Но у большего процента детей с этим отклонением пальчики несформированные до конца. Иногда эктродактилия является причиной глухоты. Источником болезни ученые называют нарушение в геноме, а именно в делеции, транслокации седьмой хромосомы и инверсии.

​​​​​​


Ярким представителем данной мутации является Человек-слон или в бытности Джозеф Меррик. Эта мутация вызывается нейрофиброматозом типа I. Костная ткань, совместно с кожей увеличиваются аномально быстрым темпом, при этом нарушая естественные пропорции. Первые симптомы синдрома Протея у ребенка проявляются не раньше полугодовалого возраста. Протекает она индивидуально. Страдают на синдром Протея как правило 1 человек на миллион. Ученым известно всего несколько сотен фактов этого заболевания.

Эта мутация человека является следствием изменений в гене AKT1, отвечающего за деление клеток. При этом заболевании клетка, имеющая в своей структуре аномалии, растет и делится с огромной неконтролируемой скоростью, клетка без аномалии растет в положенном темпе. В итоге у больного имеется смесь из нормальных и ненормальных клеток. Выглядит это не всегда эстетично.


Редкое мутационное отклонение, поэтому ученые не могут четко указать количество пораженных ним. Но человека страдающего триметиламинурией заметить можно с первого взгляда. У больного накапливается вещество триметиламин. Вещество изменяет структуру кожных выделений, в связи с этим пот пахнет достаточно неприятно, например некоторые могут благоухать как протухшая рыба, моча, тухлых яйца.

Склонен к этой аномалии женский пол. Интенсивность запаха проявляется во всей интенсивности за несколько дней до менструации, а так же на нее влияет прием гормональных лекарств. Ученые считают, что уровень выделяемого вещества триметиламина напрямую зависит от количества эстрогена и прогестерона. Люди, страдающие этим синдромом, склонны к депрессиям и живут обособленно.

​​​​


Мутация встречается достаточно часто, в среднем один ребенок из 20 тысяч рождается с этой мутацией. Это нарушение, связанное с аномальным развитием соединительной ткани. Наиболее распространенной формой на сегодняшний день - это близорукость, а так же непропорциональная длина руки или ноги. Иногда встречаются случаи аномального развития суставов. Людей с этой мутацией можно узнать по непомерно длинной и тонкой руке.

Очень редко у человека с этой аномалией имеются срощенные между собой ребра, при этом кости грудной клетки как бы западают или выпирает наружу. При запущенном течении болезни происходит деформация позвоночника.

Генетические мутации иногда меняют людей настолько, что диву даешься. И непонятно, то ли их природа обделила, то ли наказала. Но выглядят они действительно уникально.

Люди с генными аномалиями не виновны в том, что выглядят именно так. Их возникновение не зависит от воли человека. Поэтому относиться к их обладателям нужно с пониманием и тактичностью.

Витилиго

Эта мутация приводит к изменению цвета кожи, волос и иногда даже ногтей. Лечения для нее не существует.

Винни Харлоу, у которой витилиго, работает моделью. Она известна белыми полосками на коже негроидного типа.

Непохожие близнецы

Эти малыши развились из одной яйцеклетки, но появились на свет с разной внешностью вопреки стандартному стереотипу о том, что монозиготные близнецы должны быть похожи друг на друга как две капли воды.

Пегая кожа

У человека с этой мутацией от рождения полностью белые, лишенные меланоцитов пятна на коже. А также белые, похожие на седые, пряди волос.

Альбинизм

Альбинизм поражает людей всех этнических групп. Для людей с этой мутацией характерно врожденное отсутствие пигмента меланина, который придает окраску коже, волосам, радужной оболочке глаза.

Эта девочка афроамериканка, но из-за аномалии выглядит обычной блондинкой из Европы, только с кудряшками.

Синдром Ваарденбурга

Люди с этой мутацией имеют седую прядь надо лбом, врожденную тугоухость, телекант, гетерохромию радужки. Эти мать и сын - только последнее. Поэтому у них такого удивительного цвета глаза.

Дистихиаз

При этой аномалии развития появляется дополнительный ряд ресниц на верхнем веке. А ресницы на нижнем становятся толще.

Гетерхромия

У этой девушки не совпадает цвет радужной оболочки правого и левого глаза. Ее взгляд пугает и завораживает одновременно.

Гигантизм

Сильва Крус - самая высокая девушка в мире. И причиной тому - открытая эпифизарная зона роста, что встречается у людей с гигантизмом.

Расколотый подбородок

Некоторые думают, что фигуристый подбородок свидетельствует о волевом характере. Но на самом деле - о генной мутации. В организме этой девушки нет гена, который помогает костям подбородка срастись.