Главная · Сбалансированное питание · Биотрансформация лекарственных средств - клиническая фармакология. Факторы, влияющие на метаболизм лекарств Факторы, влияющие на действие ЛС

Биотрансформация лекарственных средств - клиническая фармакология. Факторы, влияющие на метаболизм лекарств Факторы, влияющие на действие ЛС

Фармакология (определение, что изучает, основные задачи ФМ)

Фармакология – наука о взаимодействие химических соединений с живыми организмами.

Изучает лекарственные средства для лечения и профилактики заболеваний

Задача фармакологии открытие новых эффективных и безопасных лекарственных средств

Частная фармакология - действие отдельных лекарств на отдельные органы.

Общая фармакология - наука, изучающая основные закономерности взаимодействия лекарственных веществ и организма друг с другом.

2. Виды лекарственной терапии.

Профилактическая (направлена на предупреждение заболеваемости);

Заместительная (используется при дефиците естественных биогенных веществ. К средствам заместительной терапии относятся ферментные препараты (панкреатин, панзинорм и т. д.), гормональные лекарственные средства (инсулин при сахарном диабете, тиреоидин при микседеме), препараты витаминов (витамин Д, например, при рахите).);

Этиотропная (направлена на устранения причины заболеваемости например антибиотики при пневмонии);

Симптоматическая (направлена на устранение симптомов заболеваемости(жаропонижающие препараты, обезболивающие);

Антидотная (направлена на применение антидотов при отравление, антидот - противоядие).

- Пути биотрансформации лекарственных средств. Реакции, проявляющиеся при повторном применении ЛС

3. Основные виды действия лекарственных веществ на организм человека:

Прямое действие.

Рефлекторное действие (валидол раздражает холодовые рецепторы полости рта и как следствие этого наступает расширение коронарных сосудов).

Обратимое и необратимое действия.

Местное действие (мази для наружного применения).

Главное

Побочное действие - нежелательное, мешающее проявлению главного эффекта.

4. Факторы, определяющие действие ЛС:

Пути биотрансформации лекарственных средств.

Часть лекарственных средств действует в организме и выводится в неизмененном виде, а часть подвергается в организме биотрансформации. В биотрансформации лекарственных средств важнейшая роль принадлежит микросомальным ферментам печени. Можно выделить два основных направления биотрансформации лекарственных веществ - метаболическую трансформацию и конъюгацию.



Под метаболической трансформацией понимают окисление, восстановление или гидролиз поступившего лекарственного вещества микросомальными оксидазами печени либо других органов.

Под конъюгацией понимают биохимический процесс, сопровождающийся присоединением к лекарственному веществу или его метаболитам различного рода химических группировок или молекул эндогенных соединений.

В результате метаболической трансформации и конъюгации лекарственные средства обычно изменяются, либо же совсем лишаются своей фармакологической активности.

Метаболическая трансформация – окисление, восстановление, гидролиз.

Конъюгация – метилирование, ацетилирование.

6. Реакции, проявляющиеся при повторном применении ЛС:

Привыкание – это постепенное уменьшение ответной реакции как результат продолжающейся или повторяющейся стимуляции в нормальных условиях. (Например при применении снотворных препаратов)

Тахифилаксия – специфическая реакция организма, заключающаяся в быстром снижении лечебного эффекта при повторном применении лекарственного средства, либо снижение способности организма отвечать развитием анафилактических реакций на повторное введение веществ, вызывающих развитие этих реакций при первичном введении. (Например эфедрин)

Пристрастие – сильная склонность, влечение к ЛС. Наркотические анальгетики

Кумуляция – усиление действия лекарственного вещества при повторном его введении. (Сердечные гликозиды, алкоголь)

Сенсибилизация (от лат, sensibilis - чувствительный), повышение реактивной чувствительности клеток и тканей (например аллергические реакции при приёме антибиотиков)

7. Понятия фармакокинетика фармакодинамика, хронофармакология.

Фрмакокинетика (kineo - движение) Изучает пути и механизмы поступления, всасывания, распределение в организме человека метаболизмы и выведения лекарственного средства.

Фармакодинамика (dinamo - сила) - изучает биологические эффекты, вызываемые данными лекарственными веществами, локализацию и механизм действия лекарственных средств.

Хронофармакология - изучает и разрабатывает закономерности взаимодействия лекарственных средств и организма с учетом биоритма.

8. Пути введения и выведения ЛС, понятие бидоступность,основные механизмы всасывания веществ в организме, виды доз.

Пути введения ЛС.

Энтеральный путь введения:

·+ Не требует стерильности.

·+ Не нужен медицинский персонал.

·- Медленный эффект

·- Низкая биодоступность.

Парэнтеральный путь введения:

·+ Быстрый эффект.

·+ Высокая биодоступность.

·- Требуется стерильность.

·- Требуется медицинский персонал.

·- Болезненно.

·- Сложно.

Основные механизмы всасывания:

·Пассивная диффузия - основной способ всасывания.

·Фильтрация через поры мембран.

·Активный транспорт.

·Пиноцитоз - инвагинация с образованием пузырька и вакуоли.

Пероральный: рот - глотка - пищевод - желудок - тонкий кишечник - ворсинки тонкого кишечника - воротная вена - печень.

·Разовая доза - на один прием.

·Суточная доза - на сутки.

·Курсовая доза - на весь курс приема.

·Минимальная доза - минимальная действующая доза.

·Терапевтическая широта - диапазон доз от минимально действующей до минимально токсической.

9. Международные и торговые наименования лекарств, что такое список А (ядовитые)и В (сильнодействующие)Понятие биодоступность. Этапы получения лекарств. Понятия слепой метод, плацебо.

Биодоступность - это количество неизменного вещества в плазме крови относительно исходной дозы препарата, выраженное в процентах (при внутривенном введении - 100%).Биодоступность лекарственного вещества - количество достигшего плазмы крови неизмененного лекарственного вещества по отношению к количеству исходной дозы. При энтеральном введении величина биодоступности в связи с потерями вещества меньше, чем при пареэнтеральном введении. За биодоступность в 100 % принимают величину поступления препарата в системный кровоток при внутривенном введении.

Этапы получения лекарств:

1) Производство лекарственного препарата в лаборатории (синтез химических соединений);

2) Проверка (исследование на лабораторных животных);

3) Клиническое исследование на группе людей.

Плацебо (пустышка) – это лекарственные формы, по внешнему виду, запаху, вкусу и прочим свойствам имитирующие изучаемый препарат, но лекарственного в-ва они не содержат.

Слепой метод – больному в неизвестной для него последовательности дают лекарственное в-во и плацебо. Только лечащий врач знает, когда больной принимает плацебо.

Международное (непатентованное) наименование – уникальное наименование действующего веществалекарственного средства, рекомендованное Всемирной организацией здравоохранения. (например Лоперамид)

Торговое (запатентованное) наименование – это название готового лекарственного средства, предназначенное для торговли (например Имодиум)

Список А – ядовитые препараты, хранятся в сейфе, продаются по рецепту.Список Б сильнодействующие препараты, продаются по рецепту.

10. Рецепт, виды лекарственных форм, их характеристика и формообразующие вещества

Государственная фармакопея, официнальные и магистральные прописи их особенности Галеновые и новогаленовые препараты

Рецепт – это письменное обращение врача в аптеку об отпуске больному лекарственного средства в определённой лекарственной форме и дозе с указанием способа его употребления.

Страница 12 из 102

Под биотрансформацией, или метаболизмом, понимается комплекс физико-химических и биохимических превращений лекарственных веществ, способствующих их превращению в более полярные и, следовательно, водорастворимые компоненты (метаболиты), которые легче выводятся из организма. В большинстве случаев метаболиты лекарственных средств менее фармакологически активны и менее токсичны, чем исходные соединения. Однако биотрансформация некоторых веществ приводит к образованию метаболитов, более активных по сравнению с вводимыми в организм веществами.
Различают два типа реакций метаболизма лекарственных препаратов в организме: несинтетические и синтетические.

Биотрансформация лекарственных средств в активные метаболиты


Исходное лекарство

Активный метаболит

Аллопуринол

Аллоксантин

Амитриптилин

Нортриптилин

Ацетилсалициловая кислота

Салициловая кислота

Бутадион

Оксифенбутазон

Диазепам

Дезметилдиазепам

Дигитоксин

Дигоксин

Кортизон

Гидрокортизон

Метилдопа

Метилнорадреналин

Преднизон

Преднизолон

Новокаинамид

N-ацетилновокаинамид

Пропранолол

N-оксипропранолол

Спиронолактон

Канренон

Фенацетин

Ацетаминофен

Хлордиазепоксид

Дезметилхлордиазепоксид

Типы реакций метаболизма лекарственных средств


Тип реакции

Лекарственное средство

Несинтетические реакции

(катализируются ферментами эндоплазматического ретикулума

или немикросомальными ферментами)

Окисление

Алифатическое гидроксилирование или окисление боковой цепочки

Тиопентал, метогекситал, пентазоцин

молекулы
Ароматическое гидроксилирование,

Аминазин, бутадион, лидокаин, салициловая кислота, фенацетин, фенамин

или гидроксилирование ароматического кольца

О-дезалкилирование

Фенацетин, кодеин, метоксифлуран

N-дезалкилирование

Морфин, кодеин, атропин, имизин, изадрин, кетамин, фентанил

S-дезалкилирование

Барбитуровая кислота

N-окисление

Аминазин, имизин, морфин

S-окисление

Аминазин

Дезаминирование

Фенамин, гистамин

Десульфирование

Тиобарбитураты, тиоридазин

Дегалогенизация

Галотан, метоксифлуран, энфлуран

Восстановление

Восстановление азогруппы

Стрептоцид, фазадиний

Восстановление нитрогруппы

Нитразепам, левомицетин

Восстановление карбоновых кислот

Преднизолон

Восстановление, катализируемое алкогольдегидрогеназой

Этанол, хлоралгидрат

Эфирный гидролиз

Ацетилсалициловая кислота, норадреналин, кокаин, новокаинамид Лидокаин, пилокарпин, изониазид, новокаинамид, фентанил

Амидный гидролиз

Синтетические реакции

Конъюгация с глюкуроновой

Салициловая кислота, морфин, парацетамол, налорфин, сульфаниламиды Парацетамол, морфин, изадрин, салициламид

кислотой

Конъюгация с сульфатами Конъюгация с аминокислотами:

глицином

Салициловая кислота, никотиновая кислота

глутатионом

Изоникотиновая кислота

глутамином

Парацетамол

Ацетилирование

Новокаинамид, сульфонамиды

Метилирование

Норадреналин, гистамин, никотиновая кислота, тиоурацил

Все несинтетические реакции метаболизма лекарственных препаратов можно разделить на две группы: катализируемые ферментами эндоплазматического ретикулума (микросомальные) и катализируемые ферментами другой локализации (немикросомальные). К несинтетическим реакциям относятся окисление, восстановление и гидролиз.
В основе синтетических реакций лежит конъюгирование лекарственных средств с эндогенными субстратами (глюкуроновая кислота, сульфаты, глицин, глутатион, метильные группы и вода). Соединение этих веществ с лекарственными препаратами происходит через ряд функциональных групп: гидроксильную, карбоксильную, аминную, эпоксидную. После завершения этой реакции молекула препарата становится более полярной, а следовательно, легче выводится из организма.
Поскольку все лекарственные средства, назначаемые внутрь, до поступления в системную циркуляцию проходят через печень, их можно разделить на две группы - с высоким и с низким печеночным клиренсом. Для лекарственных веществ первой группы типична высокая степень экстракции их гепатоцитами из крови. Способность печени метаболизировать эти препараты зависит от скорости их доставки к ней, т. е. от кровотока печени.
Для второй группы лекарственных средств печеночный клиренс зависит не от скорости кровотока, а от емкости ферментативных систем печени, метаболизирующих данные препараты. Последние могут обладать или высокой (дифенин, хинидин, толбутамид), или низкой степенью связывания с белками (теофиллин, парацетамол). Поэтому метаболизм веществ с низким печеночным клиренсом и высокой способностью к связыванию с белками зависит скорее всего от скорости их связывания с белками, а не от скорости кровотока в печени.
На биотрансформацию лекарственных средств в организме влияет множество факторов: возраст, пол, внешняя среда, характер питания, заболевания и т. д.
Поскольку печень является основным органом метаболизма лекарственных веществ, то любое ее патологическое состояние отражается на фармакокинетике препаратов. При заболеваниях печени, например при циррозах, нарушается не только функция гепатоцитов, но и ее кровообращение. Поэтому особенно изменяется фармакокинетика и биодоступность препаратов с высоким печеночным клиренсом (табл. 1 и 2). Увеличение биодоступности лекарственных средств с высоким печеночным клиренсом при пероральном применении больными циррозом печени объясняется, с одной стороны, снижением метаболизма, с другой - наличием портокавальных анастомозов, благодаря чему препарат поступает в системное кровообращение, минуя печень. Метаболизм препаратов с высоким печеночным клиренсом, введенных внутривенно, снижен у больных циррозом печени, однако степень такого снижения очень различна. Колебание этого параметра зависит скорее всего от способности гепатоцитов метаболизировать лекарственные средства в зависимости от характера кровотока печени.
Таблица 1
Изменения биодоступности и клиренса лекарственных средств с высокой степенью экстракции гепатоцитами при заболеваниях печени


Лекарство

Показатель
печеночной
экстракции

Путь
введения

Плазменный клиренс, %

Биодоступность,
0,

Лабеталол

отсутствуют

Лидокаин

Пентазоцин

Пропранолол

Примечание. В/в - внутривенно; р/о - внутрь через рот.

Фармакокинетическая классификация лекарственных средств, выводимых из организма преимущественно в результате печеночного метаболизма


Лекарственное средство

Индекс экстракции гепатоцитами

Связывание с белками,
%

С высоким клиренсом

Лабеталол

Лидокаин

Пентазоцин

Пропранолол

С низким клиренсом и высоко® способностью к связыванию с белками

Аминазин

Диазепам

Дигитоксин

Толбутамид

С низким клиренсом и малой способностью к связыванию с белками

Левомицетин

Парацетамол

Теофиллин

Тиопентал

Метаболизм веществ с низким печеночным клиренсом, таких, как теофиллин и диазепам, также изменяется при циррозе из-за поражения гепатоцитов, что проявляется в уменьшении клиренса В тяжелых случаях цирроза, когда снижается концентрация альбумина в крови, перестраивается метаболизм кислых препаратов, активно связывающихся с белками (например, фенитоина и толбутамида), поскольку возрастает свободная фракция препаратов. В общем, при заболеваниях печени клиренс лекарственных средств обычно уменьшается, а период их полужизни возрастает в результате снижения кровотока в печени и экстракции их.гепатоцитами, а также увеличения объема распределения препарата. В свою очередь, уменьшение экстракции лекарств гепатоцитами обусловлено снижением активности ферментов, нарушением захвата молекул лекарственных средств и/или связывания их с тканями печени и белками плазмы крови.
Необходимо помнить, что при поражении печени усиливается токсическое влияние многих лекарственных веществ на ЦНС и поэтому процент энцефалопатий резко возрастает. Известен печеночно-ренальный синдром, при котором снижается фильтрационно-реабсорбционная функция почек, что также отрицательно сказывается не только на метаболизме, но и на выведении препаратов. Поэтому при заболеваниях печени (в зависимости от их тяжести) некоторые лекарственные средства противопоказаны либо их следует применять с осторожностью (барбитураты, наркотические анальгетики, ингибиторы моноаминоксидазы, фенотиазины, андрогенные стероиды и т. д.).
Микросомальная биотрансформация
В гепатоцитах наиболее полно представлен набор ферментных систем терминального окисления самых разнообразных ксенобиотиков (греч. «xenos» - чужой, «bios» - жизнь), т. е. веществ, чужеродных для организма человека. К их числу относится большинство лекарственных средств.
Существенно, что микросомальному преобразованию подвергаются прежде всего липорастворимые вещества, которые легко проникают через мембраны в эндоплазматический ретикулум и там связываются с одним из цитохромов системы Р446 - Р455 (зачастую по первому обнаруженному ферменту этой системы указывают только цитохром Р450). Эти цитохромы являются первичными компонентами окислительной ферментной системы.
Скорость биотрансформации препаратов системой оксидаз смешанного типа определяется концентрацией цитохрома Р450, количеством различных форм цитохрома Р450 и их сродством к субстрату, концентрацией цитохром-с-редуктазы и скоростью восстановления комплекса «препарат - цитохром Р450». Скорость биотрансформации может зависеть и от конкурирования эндогенных и экзогенных субстратов.
Микросомальные ферменты катализируют процессы образования глюкуронидов и окисления многих лекарств, тогда как восстановление и гидролиз последних связаны не только с микросомальными, но и немикросомальными энзимами.
Дальнейшее окисление лекарственных препаратов происходит под влиянием таких окислительных ферментов, как оксидазы и редуктазы, при обязательном участии НАДФ и молекулярного кислорода. Неспецифические оксидазы катализируют процессы дезаминирования первичных и вторичных аминов, гидроксилирования боковых цепей и ароматических колец гетероциклических соединений, образования сульфоксидов и деалкилирования.
Конъюгация лекарств с глюкуроновой кислотой также осуществляется под влиянием микросомальных ферментов. Это один из существеннейших путей биотрансформации карбоновых кислот, спиртов, фенолов. Путем конъюгации при участии микросомальных ферментов из организма выводятся эстрогены, глюкокортикоиды, прогестерон, алкалоиды опия и другие наркотические анальгетики, амидопирин, салицилаты, барбитураты, антибиотики и многие другие вещества.
Под влиянием лекарственных средств может развиваться как индуцирование (возрастание активности), так и депрессия микросомальных ферментов. Существует большая группа веществ, включающихся в печеночный метаболизм, активирующих, подавляющих и даже разрушающих цитохром Р450 . К числу последних относится группа местных анестетиков типа ксикаина, совкаина, бенкаина, антиаритмических средств типа индерала, вискена, эралдина и т. д.
Более значительной является группа веществ, индуцирующих синтез ферментативных белков печени, по-видимому, с участием НАДФН2- цитохром Р450-редуктазы, цитохрома Р420, N- и О-деметилаз микросом, ионов Mg++, Са++, Мп++. Это гексобарбитал, фенобарбитал, пентобарбитал, фенилбутазон, кофеин, этанол, никотин, бутадион, нейролептики, амидопирин, хлорциклизин, димедрол, мепробамат, трициклические антидепрессанты, бензонал, хинин, кордиамин, многие хлорсодержащие пестициды. Показано, что в активации этими веществами ферментов печени участвует микросомальная глюкуронилтрансфераза. При этом возрастает синтез РНК и микросомальных белков. Важно и то, что индукторами усиливается не только метаболизм лекарств в печени, но и их выведение с желчью.
Все эти вещества ускоряют процессы метаболизма печени в 2-4 раза лишь за счет индуцирования синтеза микросомальных ферментов. Причем ускоряется метаболизм не только вводимых вместе с ними или на их фоне лекарственных препаратов, но и их самих.

Немикросомальная биотрансформация

Хотя немикросомальные ферменты участвуют в биотрансформации небольшого числа лекарственных веществ, они все же играют важную роль в метаболизме. Все виды конъюгации, исключая глюкуронидную, и все виды окисления, восстановления и гидролиза лекарственных препаратов катализируются немикросомальными ферментами. Такие реакции вносят

вклад в биотрансформацию ряда общеупотребительных лекарственных средств, в том числе аспирина и сульфаниламидов. Немикросомальная биотрансформация препаратов происходит главным образом в печени, однако она осуществляется также в плазме крови и других тканях.
При пероральном применении лекарственные вещества, абсорбируясь слизистой кишечника, поступают сначала в портальную систему, а затем в систему кровообращения, т. е. они не могут миновать печень.
Интенсивные и многочисленные реакции метаболизма протекают уже в стенке кишечника, где описаны почти все известные синтетические и несинтетические реакции. Например, изадрин подвергается конъюгации с сульфатами, гидралазин - ацетилированию. Кроме того, некоторые лекарственные вещества метаболизируются неспецифическими ферментами (пенициллины, аминазин) или бактериями кишечника (метатрексат, леводопа). Причем эти процессы могут иметь большое практическое значение. Так, доказано, что у некоторых больных абсорбция аминазина снижена до минимума вследствие значительного его метаболизма в кишечнике. Отметив возможные пути превращения лекарственных средств в кишечнике, необходимо подчеркнуть, что основные процессы биотрансформации происходят в печени.
Лекарственные вещества еще до попадания в системное кровообращение могут метаболизироваться при прохождении через стенку желудочно-кишечного тракта и через печень. Этот процесс, называемый «эффектом первого прохождения», снижает биологическую доступность лекарства.
Степень метаболизма лекарственных средств при первом прохождении определяется метаболической емкостью ферментов для данного препарата, скоростью метаболических реакций и скоростью абсорбции. Так, если лекарственное вещество применяется перорально в небольшой дозе, а емкость ферментов и скорость метаболизма его значительны, то большая часть препарата биотрансформируется, за счет чего снижается его биодоступность. С увеличением дозы лекарственного средства ферментативные системы, участвующие в метаболизме первого прохождения, могут насыщаться, и биодоступность препарата увеличивается.
Лекарственные средства, обладающие «эффектом первого прохождения» через печень


Алпренолол

Изопротеренол

Окспренолол

Альдостерон

Кортизон

Органические нитраты

Ацетилсалициловая

Лабеталол

Пентазоцин

Лидокаин

Пропранолол

Верапамил

Метопролол

Резерпин

Гидралазин

Фенацетин

Метоклопамид

Фторурацил

Имипрамин

Метилтестостерон

Индукторы микросомального окисления (по Л. Е. Холодову, В. П. Яковлеву)


Антипирин

Глутетимид

Барбитураты:

Диазепам *

амибарбитал

Карбамазепин

апобарбитал

Мепробамат *

барбитал

Рифампицин

бутобарбитал

Спиронолактон *

винбарбитал

Трициклические антидепрессанты

гептабарбитал

(некоторые)

секобарбитал

Фенитоин

фенобарбитал

Хлоримипрамин

Предположительно обладает способностью индуцировать ферменты.
Лекарственные средства, биотрансформация которых в организме ускоряется под влиянием препаратов - индукторов ферментов (фенобарбитал, рифампицин, фенитоин)


Фенобарбитал

Рифампицин

Фенитоин

Амидопирин

Антипирин

Антипирин

Аминазин

Варфарин

Гидрокортизон

Антипирин

Гексобарбитал

Дексаметазон

Варфарин

Гидрокортизон

Дигитоксин

Гидрокортизон

Гликодиазин

Дикумарин

Гризеофульвин

Тироксин

Диазепам

Дигитоксин

Фенитоин

Дигитоксин

Дикумарин

Норэтистерон

Доксициклин

Контрацептивы, прини-

Нитроглицерин

маемые внутрь

Контрацептивы, принимае-

Рифампицин

мые внутрь
Рифампицин
Тестостерон
Фенилбутазон
Фенитоин
Фенобарбитал
Хинин

Толбутамид


30. Клиническое значение биотрансформации лекарств. Влияние пола, возраста, массы тела, экологических факторов, курения, алкоголя на биотрансформацию лекарств.

Клиническое значение биотрансформации ЛС : т.к. доза и частота приема , необходимые для достижения эффективной концентрации в крови и тканях, могут варьировать у больных из-за индивидуальных различий в распределении, скорости метаболизма и элиминации ЛС, важен их учет в клинической практике.

Влияние на биотрансформацию ЛС различных факторов:

а) функциональное состояние печени : при ее заболеваниях клиренс ЛС обычно уменьшается, а период полуэлиминации возрастает.

б) влияние факторов среды : курение способствует индукции цитохрома P450, в результате чего ускоряется метаболизм ЛС в ходе микросомального окисления

в) у вегетарианцев биотрансформация ЛС замедлена

г) у пожилых и молодых пациентов характерна повышенная чувствительность к фармакологическому или токсическому действию ЛС (у лиц пожилого возраста и у детей до 6 мес активность микросомального окисления снижена)

д) у мужчин метаболизм некоторых ЛС происходит быстрее, чем у женщин, т.к. андрогены стимулируют синтез микросомальных ферментов печени {этанол}

е) высокое содержание в пище белков и интенсивная физическая нагрузка : ускорение метаболизма ЛС.

ж) алкоголь и ожирение замедляют метаболизм ЛС

31. Метаболическое взаимодействие лекарств. Болезни, влияющие на их биотрансформацию.

Метаболическое взаимодействие ЛС:

1) индукция ферментов метаболизма ЛС – абсолютное увеличение их количества и активности вследствие воздействия на них определенных ЛС. Индукция ведет к ускорению метаболизма ЛС и (как правило, но не всегда) к снижению их фармакологической активности (рифампицин, барбитураты – индукторы цитохрома P450)

2) ингибирование ферментов метаболизма ЛС – угнетение активности ферментов метаболизма под действием некоторых ксенобиотиков:

а) конкурентное метаболическое взаимодействие – ЛС с высоким аффинитетом к определенным ферментам снижают метаболизм ЛС с более низким аффинитетом к этим ферментам (верапамил)

б) связывание с геном, индуцирующим синтез определенных изоферментов цитохрома P450 (цимедин)

в) прямая инактивация изоферментов цитохрома P450 (флавоноиды)

Болезни, влияющие на метаболизм ЛС:

а) болезни почек (нарушение почечного кровотока, острые и хронические заболевания почек, исходы длительных почечных заболеваний)

б) болезни печени (первичный и алкогольный циррозы, гепатиты, гепатомы)

в) болезни ЖКТ и эндокринных органов

в) индивидуальная непереносимость некоторых ЛС (отсутствие ферментов ацетилирования – непереносимость аспирина)

32. Пути и механизмы выведения лекарств из организма. Возможности управления выведением лекарств.

Пути и механизмы выведения ЛС: элиминация ЛС печенью и почками и некоторыми другими органами:

а) почками путем фильтрации , секреции, реабсорбции

б) печенью путем биотрансформации, экскреции с желчью

в) через легкие, слюну, пот, молоко и т.д. путем секреции, испарения

Возможности управления процессами выведения ЛС:

1. управление pH: в щелочной моче повышается выведение кислых соединений, в кислой – выведение основных соединений

2. применение желчегонных препаратов (холензим, аллохол)

3. гемодиализ, перитонеальный диализ, гемосорбция, лимфосорбция

4. форсированный диурез (в/в NaCl или глюкоза для водной нагрузки + фуросемид или маннитол)

5. промывание желудка, применение клизм

33. Концепция рецепторов в фармакологии, молекулярная природа рецепторов, сигнальные механизмы действия лекарств (типы трансмембранной сигнализации и вторичные посредники).

Рецепторы – молекулярные компоненты клетки или организма, которые взаимодействуют с ЛС и индуцируют ряд биохимических событий, ведущих к развитию фармакологического эффекта.

Концепция рецепторов в фармакологии:

1. Рецепторы детерминируют количественные закономерности действия ЛС

2. Рецепторы ответственны за селективность действия ЛС

3. Рецепторы посредники действия фармакологических антагонистов

Концепция рецепторов - основа целенаправленного применения лекарственных средств, влияющих на регуляторные, биохимические процессы и коммуникации.

Молекулярная природа рецепторов:

1. регуляторные белки, посредники действия различных химических сигналов: нейромедиаторов, гормонов, аутокоидов

2. ферменты и трансмембранные белки переносчики (Na + , K + АТФаза)

3. структурные белки (тубулин, белки цитоскелета , клеточная поверхность)

4. ядерные белки и нуклеиновые кислоты

Сигнальные механизмы действия лекарств:

1) проникновение растворимых в липидах лигандов через мембрану и их действие на внутриклеточные рецепторы.

2) сигнальная молекула связывается с внеклеточным доменом трансмембранного белка и активирует ферментативную активность его цитоплазматического домена.

3) сигнальная молекула связывается с ионным каналом и регулирует его открытие.

4) сигнальная молекула связывается с рецептором на поверхности клетки, который сопряжен с эффекторным ферментом посредством G-белка. G-белок активирует вторичный посредник.

Типы трансмембранной сигнализации:

а) через 1-TMS-рецепторы, обладающие и не обладающие тирозинкиназной активностью

б) через 7-ТMS-рецепторы, связанные с G-белком

в) через ионные каналы (лиганд-зависимые, потенциал-зависимые, щелевые контакты)

Вторичные посредники : цАМФ, ионы Ca2+, ДАГ, ИФ3.

34. Физико-химические и химические механизмы действия лекарственных веществ.

а) Физико-химическое взаимодействие с биосубстратом – неэлектролитное действие.

Основные фармакологические эффекты: 1) наркотическое 2) обще депрессивное 3) парализующее 4) местно раздражающее 5) мембранолитическое действия.

Химическая природа веществ: химически инертные углеводороды, эфиры, спирты, альдегиды, барбитураты, газовые наркотические средства

Механизм действия – обратимое деструирование мембран.

б) Химический (молекулярно-биохимический) механизм действия лекарственных средств.

Основные типы химического взаимодействия с биосубстратом:


  1. Слабые (нековалентные, обратимые взаимодействия) (водородные, ионные, монодипольные, гидрофобные).

  2. Ковалентные связи (алкилирование).
Значение нековалентных взаимодействий ЛС : действие неспецифично, не зависит от химического строения вещества.

Значение ковалентных взаимодействий ЛС : действие специфично, критически зависит от химических строения, реализиуется посредством влияния на рецепторы.

35. Термины и понятия количественной фармакологии: эффект, эффективность, активность, агонист (полный, частичный), антагонист. Клиническое различие понятий активность и эффективность лекарств.

Эффект (ответ) – количественный выход реакции взаимодействия клетки, органа, системы или организма с фармакологическим агентом.

Эффективность – мера реакции по оси эффекта – величина отклика биологической системы на фармакологическое воздействие ; это способность ЛС оказывать максимально возможное для него действие . Т.е. фактически это максимальная величина эффекта, которую можно достигнуть при введении данного лекарства. Численно характеризуется величиной Е max . Чем выше Е max , тем выше эффективность лекарства

Активность – мера чувствительности к ЛС по оси концентраций, характеризует аффинность (сродство лиганда к рецептору), показывает, какая доза (концентрация) ЛС способна вызвать развитие стандартного эффекта, равного 50% от максимально возможного для этого лекарства . Численно характеризуется величиной ЕС 50 или ED 50 . Чем выше активность ЛС, тем меньшая его доза требуется для воспроизведения терапевтического эффекта.

Эффективность: 1=2>3

Активность: 1>3>2

В клинической деятельности важнее знать эффективность, а не активность, т.к. нас больше интересует способность ЛС вызывать определенное действие в организме.

Агонист – лиганд, который связывается с рецептором и вызывает биологическую реакция, срабатывание физиологической системы. Полный агонист – максимальный отклик, частичный – вызывают меньшую реакцию даже при оккупации всех рецепторов.

Антагонист - лиганды занимающие рецепторы или изменяющие их таким образом, что они утрачивают способность взаимодействовать с другими лигандами, но сами не вызывающие биологической реакции (блокируют действие агонистов).

К
онкурентные антагонисты
- взаимодействуют с рецепторами обратимо и тем самым конкурируют с агонистами. Увеличение концентрации агониста может полностью устранить эффект антагониста. Конкурентный антагонист сдвигает кривую «доза-эффект» для агониста, увеличивает EC 50 , не влияет на E max .

Неконкурентные антагонисты - необратимо изменяют сродство рецепторов к агонисту , связывание часто происходит не с активным участком рецептора, увеличение концентрации агониста не устраняет действие антагониста. Неконкурентный антагонист снижает Emax, не изменяет EC50, кривая «доза-эффект» сжимается относительно вертикальной оси.

36. Количественные закономерности действия лекарств. Закон уменьшения отклика биологических систем. Модель Кларка и ее следствия. Общий вид зависимости концентрация – эффект в нормальных и логнормальных координатах.

Модель Кларка-Ариенса:

1. Взаимодействие между лигандом (L) и рецептором (R) обратимы.

2. Все рецепторы для данного лиганда – эквивалентны и независимы (их насыщение не влияет на другие рецепторы).

3. Эффект прямо пропорционален числу занятых рецепторов.

4. Лиганд существует в двух состояниях: свободном и связанном с рецептором.

А) , где Kd – константа равновесия, Ke – внутренняя активность.

Б) Т.к. при возрастании количества лигандов в какой-то момент времени все рецепторы окажутся заняты, то максимально возможное количество образованных комплексов лиганд-рецептор описывается формулой:

= [R] ×
(1)

Эффект определяется вероятностью активации рецептора при связывании с лигандом, т.е. его внутренней активностью (Ке), поэтому E = Ke×. При этом эффект максимален при Ке=1 и минимален и Ке=0. Естественно, что максимальный эффект описывается соотношением Emax = Ke×, где – общее число рецепторов для данного лиганда

Эффект зависит и от концентрации лиганда на рецепторах [С], поэтому

E = Emax
(2)

Из приведенных соотношений вытекает, что EC 50 =Kd

E max – максимальный эффект, B max – максимальное число связанных рецепторов, EC 50 – концентрация ЛС, при которой возникает эффект, равный половине от максимального, K d – константа диссоциации вещества от рецептора, при которой связано 50% рецепторов.

Закону убывания отклика соответствует параболическая зависимость «концентрация – эффективность». Ответ на малые дозы ЛС обычно возрастает прямо пропорционально дозе . Однако при увеличении дозы прирост ответной реакции снижается и в конечном счете может быть достигнута доза, при которой не происходит дальнейшего увеличения ответа (за счет оккупации всех рецепторов для данного лиганда).

37. Изменение эффекта лекарств. Градуальная и квантовая оценка эффекта, сущность и клинические приложения. Меры количественной оценки активности и эффективности лекарств в экспериментальной и клинической практике.

Все фармакологические эффекты можно условно разделить на две категории:

а) градуальные (непрерывные, интегральные) эффекты – такие эффекты ЛС, которые могут быть измерены количественно { действие гипотензивных ЛС – по уровню АД}. Описываются градуальной «кривой доза-эффект» (см. в. 36), на основе которой можно оценить: 1) индивидуальную чувствительность к ЛС 2) активность ЛС 3) максимальную эффективность ЛС

б) квантовые эффекты – такие эффекты ЛС, которые являются дискретной величиной, качественным признаком, т.е. описываются всего лишь несколькими вариантами состояний {головная боль после приема анальгетика или есть, или нет}. Описывается квантовой кривой доза-эффект, где отмечают зависимость проявления эффекта в популяции от величины принимаемой дозы ЛС. График зависимости доза-эффект при этом имеет куполообразный вид и идентичен Гауссовой кривой нормального распределения. На основе квантовой кривой можно: 1) оценить популяционную чувствительность ЛС 2) отметить наличие эффекта при данной дозе 3) выбрать среднюю терапевтическую дозу.

Различия между градуальной и квантовой характеристикой «доза-эффект»:


Параметр

Градуальная кривая

Квантовая кривая

Характер эффекта

Количественный

Качественный

Возможность построения

У индивидуума

В популяции

Сила ЛС



Определяется величиной EC50 (ED50)

Эффективность

Определяется величиной Emax

Не может быть определена без специального анализа

Вид кривой

Экспоненциальная зависимость (S-образная в полулогарифмических координатах)

Кривая Гауссова распределения

Количественная оценка активности и эффективности ЛС проводится на основе построения кривых «доза-эффект» и их последующей оценке (см. в.35)

38. Виды действия лекарственных средств. Изменение действия лекарств при их повторном введении.

Виды действия ЛС:

1. Местное действие – действие вещества, возникающее на месте его приложения (анестетик – на слизистую оболочку)

2. Резорбтивное (системное) действие – действие вещества, развивающееся после его всасывания, поступления в общий кровоток, а затем в ткани. Зависит от путей введения ЛС и их способности проникать через биологические барьеры.

Как при местном, так и резорбтивном действии лекарственные средс­тва могут оказывать либо прямое , либо рефлекторное влияние:

а) прямое влияние - непосредственный контакт с органом-мишенью (адреналин на сердце).

б) рефлекторное – изменение функции органов или нервных центров путем влияния на экстеро- и интерорецепторы (горчичники при патологии органов дыхания рефлекторно улучшают их трофику)

Изменения действия ЛС при их повторном введении:

1. Кумуляция – увеличение эффекта вследствие накопления в организме ЛС:

а) материальная кумуляция - накопление действующего вещества в организме {сердечные гликозиды}

б) функциональная кумуляция – нарастающие изменения функции систем организма {изменения функции ЦНС при хроническом алкоголизме}.

2. Толерантность (привыкание) - снижение ответной реакции организма на повторные введения ЛС; для того, чтобы восстановить реакцию на ЛС, его приходится вводить во все бóльших и бóльших дозах {диазепам}:

а) истинная толерантность – наблюдается как при энтеральном, так и при парентеральном введении ЛС, не зависит от степени его всасывания в кровоток. В ее основе - фармакодинамические механизмы привыкания:

1) десенситизация – снижение чувствительности рецептора к лекарственному средству {-адреномиметики при длительном применении приводят к фосфорилированию -адренорецепторов, которые не способны ответить на -адреномиметики}

2) Down-регуляция – снижение числа рецепторов к лекарственному средству {при повторных введениях наркотических анальгетиков количество опиоидных рецепторов снижается и требуются все бóльшие и бóльшие дозы лекарства, чтобы вызвать желаемый ответ} . Если ЛС блокирует рецепторы, то механизм толерантности к нему может быть связан с up-регуляцией – увеличением числа рецепторов к лекарственному средству (-адреноблокаторы)

3) включение компенсаторных механизмов регуляции (при повторных введениях гипотензивных препаратов коллапс возникает значительно реже, чем при первом введении за счет адаптации барорецепторов)

б) относительная толерантность (псевдотолерантность) - развивается только при введении ЛС внутрь и связан со снижением скорости и полноты всасывания лекарства

3. Тахифилаксия – состояние, при котором частое введение ЛС вызывает развитие толерантности уже через несколько часов, но при достаточно редких введениях ЛС его эффект сохраняется в полной мере. Развитие толерантности связано обычно с истощением эффекторных систем.

Биология и генетика

Гидрофобные соединения легко проникают через мембраны простой диффузией в то время как лекарственные вещества нерастворимые в липидах проникают через мембраны путём трансмембранного переноса при участии разных типов транслоказ. Следующие этапы метаболизма лекарственного вещества в организме тоже определяются его химическим строением гидрофобные молекулы перемещаются по крови в комплексе с альбумином кислым агликопротеином или в составе липопротеинов. В зависимости от структуры лекарственное вещество может поступать из крови в клетку...

Биотрансформация лекарственных веществ. Влияние лекарств на ферменты, участвующие в обезвреживании ксенобиотиков.

Лекарства, поступившие в организм, проходят следующие превращения:

  1. всасывание;
  2. связывание с белками и транспорт кровью;
  3. взаимодействие с рецепторами;
  4. распределение в тканях;
  5. метаболизм и выведение из организма.

Механизм первого этапа (всасывание) определяется физико-химическими свойствами лекарства. Гидрофобные соединения легко проникают через мембраны простой диффузией, в то время как лекарственные вещества, нерастворимые в липидах, проникают через мембраны путём трансмембранного переноса при участии разных типов транслоказ. Некоторые нерастворимые крупные частицы могут проникать в лимфатическую систему путём пиноцитоза.

Следующие этапы метаболизма лекарственного вещества в организме тоже определяются его химическим строением - гидрофобные молекулы перемещаются по крови в комплексе с альбумином, кислым а,-гликопротеином или в составе липопротеинов. В зависимости от структуры лекарственное вещество может поступать из крови в клетку или, являясь аналогами эндогенных веществ, связываться рецепторами клеточной мембраны.

Действие на организм большинства лекарств прекращается через определённое время после их приёма. Прекращение действия может происходить потому, что лекарство выводится из организма либо в неизменённом виде - это характерно для гидрофильных соединений, либо в виде продуктов его химической модификации (биотрансформации).

Биохимические превращения лекарственных веществ в организме человека, обеспечивающие их инактивацию и детоксикацию, являются частным проявлением биотрансформации чужеродных соединений.

В результате биотрансформации лекарственных веществ может произойти:

  1. инактивация лекарственных веществ, т.е. снижение их фармакологической активности;
  2. повышение активности лекарственных веществ;
  3. образование токсических метаболитов.

Инактивация лекарственных веществ

Инактивация лекарственных веществ, как и всех ксенобиотиков, происходит в 2 фазы. Первая фаза - химическая модификация под действием ферментов монооксигеназной системы ЭР. Например, лекарственное вещество барбитурат в ходе биотрансформации превращается в гидроксибарбитурат, который далее участвует в реакции конъюгации с остатком глюкуроновой кислоты. Фермент глюкуронилтрансфераза катализирует образование барбитуратглюкуронида, в качестве источника глюкуроновой кислоты используется УДФ-глюкуронил. В первую фазу обезвреживания под действием монооксигеназ образуются реакционно-способные группы -ОН, -СООН, -NH2, -SH и др. Химические соединения, уже имеющие эти группы, сразу вступают во вторую фазу обезвреживания - реакции конъюгации.

Реакции конъюгации лекарственных веществ

Вторая фаза инактивации - конъюгация (связывание) лекарственных веществ, как подвергшихся каким-либо превращениям на первом этапе, так и нативных препаратов. К продуктам, образованным ферментами микросомального окисления, может присоединяться глицин по карбоксильной группе, глюроновая кислота или остаток серной кислоты - по ОН-группе, ацетильный остаток - к NH2-гpyппe. В превращениях второй фазы инактивации лекарственных веществ принимают участие эндогенные соединения, образующиеся в организме с затратой энергии SAM: (АТФ), УДФ-глюкуронат (УТФ), Ацетил-КоА (АТФ) и др. Поэтому можно сказать, что реакции конъюгации сопряжены с использованием энергии этих макроэргических соединений. В неизменённом виде выделяются главным образом высокогидрофильные соединения. Из липофильных веществ исключение составляют средства для ингаляционного наркоза, основная часть которых в химические реакции в организме не вступает. Они выводятся лёгкими в том же виде, в каком были введены.

Факторы, влияющие на активность ферментов биотрансформации лекарств

Лекарственные средства в результате химической модификации, как правило, теряют свою биологическую активность. Таким образом, эти реакции лимитируют во времени действие лекарств. При патологии печени, сопровождающейся снижением активности микросомальных ферментов, продолжительность действия ряда лекарственных веществ увеличивается. Некоторые препараты снижают активность монооксигеназной системы. Например, левомицетин и бутадиен ингибируют ферменты микросомального окисления. Антихолинэстеразные средства, ингибиторы моноаминооксидазы, нарушают функционирование фазы конъюгации, поэтому они пролонгируют эффекты препаратов, которые инактивируются этими ферментами. Кроме того, скорость каждой из реакций биотрансформации лекарственного вещества зависит от генетических, физиологических факторов и экологического состояния окружающей среды.

Возрастные особенности. Чувствительность к лекарственным средствам меняется в зависимости от возраста. Например, у новорождённых активность метаболизма лекарств в первый месяц жизни существенно отличается от взрослых. Это связано с недостаточностью многих ферментов, участвующих в биотрасформации лекарственных веществ, функции почек, повышенной проницаемостью гематоэнцефалического барьера, недоразвитием ЦНС. Так, новорождённые более чувствительны к некоторым веществам, влияющим на ЦНС (в частности, к морфину). Очень токсичен для них левомицетин; это объясняется тем, что в печени у новорождённых малоактивны ферменты, необходимые для его биотрансформации. В пожилом возрасте метаболизм лекарственных веществ протекает менее эффективно: снижается функциональная активность печени, нарушается скорость экскреции препаратов почками. В целом чувствительность к большинству лекарственных средств в пожилом возрасте повышена, в связи с чем их доза должна быть снижена.

Генетические факторы. Индивидуальные различия в метаболизме ряда препаратов и в реакциях на препараты объясняют генетическим полиморфизмом, т.е. существованием в популяции изоформ некоторых ферментов биотрансформации. В ряде случаев повышенная чувствительность к лекарственным средствам может быть обусловлена аследственной недостаточностью некоторых ферментов, участвующих в химической модификации. Например, при генетической недостаточности холинэстеразы плазмы крови длительность действия миорелаксанта дитилина резко возрастает и может достигать 6-8 ч и более (в обычных условиях дитилин действует в течение 5-7 мин). Известно, что скорость ацетилирования противотуберкулёзного средства изониазида варьирует довольно широко. Выделяют лиц с быстрой и медленной метаболизирующей активностью. Считают, что у лиц с медленной инактивацией изониазида нарушена структура белков, регулирующих синтез фермента ацетилтрансферазы, обеспечивающего конъюгацию изониазида с ацетильным остатком.

Факторы окружающей среды. Существенное влияние на метаболизм лекарственных веществ в организме оказывают также факторы окружающей среды, такие как ионизирующая радиация, температура, состав пищи и особенно различные химические вещества (ксенобиотики), в том числе и сами лекарственные вещества.


А также другие работы, которые могут Вас заинтересовать

72931. Общество как объект философского анализа. Проблема периодизации всемирной истории. Личность и общество. Проблема свободы и ответственности личности. Будущее человечества (философский аспект) 243.5 KB
В философии существуют разные точки зрения по вопросам относящимся к сущности общества причинам его развития движущим силам. Натурализм или географическое направление развитие общества определяется природными условиями климатом плодородием почвы богатством минеральных ресурсов и т.
72932. Философия как система теоретического знания и тип мировоззрения. История философии 141.5 KB
Философия имеет ряд разделов: онтологию – учение о бытии, гносеологию – учение о познании, аксиологию – учение о ценностях. Выделяют социальную философию и философию истории, а также философскую антропологию – учение о человеке. Философия – это не все мировоззрение, а лишь одна из его форм.
72933. Динамічна анатомія 78.5 KB
Локомоції - група рухів зі зміною площі опори й з переміщенням тіла з одного місця на інше. У цій групі виділяють 2 різновиду рухів. До першого відносять циклічні рухи, що складаються з окремих повторюваних циклів (хода, біг, плавання, лижні перегони, ковзанярський спорт, веслування й ін.).
72934. Ранние цивилизации: Египет, Передняя Азия, Индия, Китай 25.72 KB
Самые первые государства на земле появляются в долинах крупных рек Нила, Тигра, Евфрата, там, где возможно было создать оросительные (ирригационные) системы – основу поливного земледелия. В долинах этих рек люди гораздо меньше, чем в других местах, зависели от природных условий, получали стабильные урожаи.
72935. Античная цивилизация. Древняя Греция 33.96 KB
Самые высокие оценки греческой цивилизации не кажутся преувеличенными. Мысль о чуде греческой цивилизации вызвана скорее всего ее необычайно быстрым расцветов. Создание греческой цивилизации относится к эпохе культурного переворота VII V вв.
72936. Біосфера. Роль В.І.Вернадського у вивченні біосфери. Ноосфера 33.73 KB
Жива речовина. Що принципово відрізняє нашу планету від будь-якої іншої планети Сонячної системи? Наявність життя. «Якби на Землі не було життя, - писав академік В. І. Вернадський, - обличчя її було б так само незмінним і хімічно інертним, як нерухоме обличчя Місяця, як інертні уламки небесних світил».
72938. Радіація в біосфері. Наслідки Чорнобильської катастрофи 27.4 KB
Внаслідок міграції разом з атмосферним повітрям водою їжею радіонукліди потрапляють в організм людини накопичуються там і спричинюють його внутрішнє опромінення. Щоб запобігти наслідкам опромінення вживають заходів щодо обмеження зовнішнього і внутрішнього опромінення персоналу...
72939. Сучасна наука про довкілля 21.65 KB
Вагомим внеском у становленні екології були праці К. Мебіуса (1877), який запропонував поняття «біоценоз» і Ф.Даля (1890),який ввів у наукове використання термін «екотоп». На початку ХХ ст. американські дослідники Ф.Клементс,Р. Адамс,В.Шелфорд розробили основи і методи дослідження угрупувань живих організмів.

Скорость каждой из реакций, по которой метаболизируется то или иное лекарственное вещество, зависит от многих факторов. Эти факторы подразделяются на генетические, физиологические и связанные с окружающей средой. В последние годы установлена высокая степень зависимости превращений лекарственных веществ от генетического контроля. Своеобразие фармакологических и токсических свойств лекарственных веществ, обнаруживаемых в организме человека и животных, объясняется гетерогенностью (разнородностью) ряда ферментных систем у различных видов животных организмов.

Особое значение имеет установленный генетический полиморфизм (т.е. существование нормальных вариантов) некоторых ферментов в человеческих популяциях, что приводит к индивидуальным различиям в метаболизме ряда препаратов и в реакциях на препараты.

Изучение индивидуальной вариабельности скоростей метаболизма лекарств привело к возникновению нового направления медицинской биохимии и молекулярной генетики - фармакогенетики.

Наряду с генетическими факторами существенное значение в биотрансформации лекарств принадлежит физиологическим факторам.

К числу физиологических факторов, которые влияют на метаболизм лекарственных веществ, относят вид организма, возраст, пол, состояние питания, беременность, состояние гормональной системы и различные заболевания.

Существенное влияние на метаболизм лекарственных веществ в организме оказывают факторы окружающей среды, такие как световой режим, температура окружающей среды, состав пищи, стресс, ионизирующая радиация, и, особенно, различные химические вещества - ксенобиотики, в том числе и сами лекарственные вещества.

Наиболее выраженное действие на функционирование биохимических систем, ответственных за процессы детоксикации ксенобиотиков, оказывают химические вещества, которые можно подразделить на две группы: индукторов и ингибиторов микросомальных монооксигеназ.

В настоящее время описано более 250 химических соединений, вызывающих увеличение активности микросомальных ферментов. К числу индукторов относятся инсектициды (ДДТ, алдрин, гексахлорциклогексан) и многочисленные медикаментозные препараты: анальгетики (амидопирин), снотворные (барбитураты), транквилизаторы и нейролептики (мепротон, сибазон, аминазин), противовоспалительные средства (бутадиен), гипогликемические препараты (букарбан), антигистаминные средства (димедрол), антитуберкулезные средства (рифампицин), стероиды (тестостерон, метилтестостерон, гидрокортизон, преднизолон).

К числу ингибиторов микросомальных монооксигеназ относятся многочисленные соединения различной химической природы, которые условно можно разделить на несколько групп:



обратимые ингибиторы прямого действия (эфиры, спирты, фенолы, хиноны, производные пиридина и др.);

обратимые ингибиторы непрямого действия, воздействующие через продукты своего метаболизма (производные бензола, алкиламины, ароматические амины и др.);

3) необратимые ингибиторы, разрушающие цитохром Р 450 (четыреххлористый углерод, серусодержащие соединения и др.);

4) ингибиторы, тормозящие синтез и (или) ускоряющие распад цитохрома Р 450 (ионы металлов, антибиотики, ингибирующие белковый синтез и др.).

Следует иметь в виду, что ингибирующий и стимулирующий эффекты лекарственных веществ на метаболизм других лекарственных веществ зачастую приводит к изменению фармакологической активности, что можно наблюдать при множественной химиотерапии.


Ю.К. Василенко

Краткий курс биохимии для студентов заочного
отделения фармвузов

Учебное пособие

Технический редактор Т.М. Браташова.

Подписано к печати «___» ________200 г. формат 60х84 I/16

Бумага печатная белая. Усл. печатн. л. 9,0

Уч.-изд.л. 9,0 Тираж экз.

Пятигорская Государственная фармацевтическая академия,

357533. г. Пятигорск, пр. Калинина, 11